
I have now finished the challenge.
I found this to be a very peculiar challenge. It very much reminds me of the rounding
population challenge in which the tweaks were strategic and served massive value.
However I think the difficulty level on this was extremely tough.

During the code, I was trying to manipulate my variables to be the same values as those
expected (as part of my design phase). I consider this was the only way to remember
logic, since variables seemed so arbitrary.

I managed to initially get the logic to hold for the nth term 1 and 2.
But then, it was mighty difficult.
Since I knew the code could not continue in the driver main method:
it left me using alternative techniques to shift the variable values for calculating number
rows below and above the dissector.

This was extremely challenging without even using Collection.
I also suspect the difficulty was enhanced much more opting for a recursive approach
to this challenge.
Also, as part of the recursive exercises I had a clear if statement (such as if variable is
less than 1, return value. And stay clear of the main logic). But with this exercise, I just
had no idea.

Once again on my research, it stated that there are suitable scenarios for iterative vs
recursive.
I am slightly caught in two minds if there are any trade offs in the performance.
But I am very sure that if I had not created a design, it was almost close to impossible for
me.

From all the coding undertaken to current date, I had to refer to design and code the
most.

I am now ready to test this properly, although I feel I have obtained the correct onscreen
values for nth term 1 => 5

Once I am satisfied that the code functions, I can utilise collections to enhance my data
seeking.
I will maintain a new major version of the code.

And it would be interesting to see if there are performance differences. I suspect there
will be for large centered hexagonal numbers!

*** OUTPUT *****************

TEST CASE 1: n =1

TEST CASE 2: n =7

TEST CASE 3: n =19

TEST CASE 3: n =37

As described above, the code does not return to the Main class.
The above are all the test cases presented.
I will now try the next nth term 5. I am hoping to get 61 beads…

TEST CASE 4: n =61

Now it is worth exploring a few more scenarios. Note my code is designed so if the
calculated centered hexagon number exceeds n, it will terminate

TEST CASE 4: n =179

It can be seen that 169 is below 179, so it continues to run

And of course with recursion will be the StackOverFlow error
I performed the following test case:

TEST CASE 4: n = 999179

So I will prevent the code from going into NthTerm=66

Now I will maintain the code for the above.
My attention will span towards using collection and recalling values from the Hashmap
since it will alleviate the recursion issues…

Just to ensure I am completing the correct lookup:

I am now looking at my rationale for using map.
I know I have tackled the

I have completed the following implementation, it was an absolute headache. Infact it

added more code as expected, and for some reason it caused the Stack overflow much
earlier (on nth term 47 as oppose to 66). So this meant it has performed more
recursion! Which I am also unsure about at this stage.

For now, I have introduced this bit and adjusted value….

On first instance, it appears that all my results are still correct. But I can see that there
are so many more transactional outputs on the screen. But this is unrelated to the
StackOverFlow since the session has not been killed due to memory exhaustion..

It also meant I introduced more repeat code… I was aware of this occurring even before
I implemented the collection… However I opted to allow duplication as oppose to
introducing methods. This was simply because the challenge stated to write a function.
Infact using a single method was out of the question given that I tackled this via
recursion and required static variables to hold state.

I will complete the official testing of the collection based challenge at later point and
remediate the code!!

