Centered Hexagonal Number
Published by Matt in Java ~

formatting numbers strings

As stated on the On-Line Encyclopedia of Integer Sequences:

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has
6 neighbors.

A centered hexagonal number is a centered figurate number that represents a hexagon with

a dot in the center and all other dots surrounding the center dot in a hexagonal lattice.

At the end of that web page the following illustration is shown:

I1lustration of initial terms:

0 00O

00O 000O0O0
o oo0o0oO 00O0O0OOO
o 0 0 0O0O0O0O 0O0O0O0OO0OOO
o 0O0O0O 000O0OO

o0 o0 0 00O0O0

oo0o0oO0

1 7 19 37

Write a function that takes an integer n and returns "Invalid" if n is not a centered

hexagonal number or its illustration as a multiline rectangular string otherwise.

| am examining this challenge and few patterns have emerged:

The middle dissection is odd multiple
There are n-1 rows (above or below) for each subsequent configuration where n=1

onwards
N=1 N=2 N=3 N=4 N=5
Middle Middle Middle Middle Middle
dissection =1 dissection=3 dissection=5 dissection=7 dissection=9
If (N==1) M = (N*2)-1 M=(N*2)-1 M=(N*2)-1 M=(N*2)-1
M=N

Number rows
above or below

Number rows
above or below

Number rows
above or below

Number rows
above or below

Number rows
above or below

IS: IS: IS: IS: IS:
R=N-1 R=N-1 R=N-1 R=N-1 R=N-1
H=1 H=7 H=19 H=37 H=61

| am seeing no relationship whatsoever between N and H.

| can attempt to use HashMap to store key value of “beads” in row.

This will provide a level of memorization to speed up execution when moving from

N=1 to N=7? (need toterminate when the value in H exceeds n (value passed into the

function).




N=4

099 0960 M=(N*2)-1=7

| R=(N-1)=3 I /

hashMp_put(6,6)
hashMP _put(5,5)
hashMP_put(4,4)

if (hashMP.containsKey(6))

It will use this sort of notation to interrogate the hashMap (as N
increases).

It will readily get the value hashMP.get(8)

Alternatively hashmap can be discarded altogether since the
value for row 1 = (M-1), row 2 = (M-2) and row 3 = (M-3)

Unfortunately the hashiMap will not have the same advantages as factonals
since hashMP.get(G) will not have 6 x5x4 x3x2x 1

But | can contemplate a similar concept

in hashMP put(6, (I will intend to store 6+5+4+3 +2 +1 =21)

In hashMP_put(5, (I will intend to store 5+4+3 +2 +1 = 15)

in hashMP put(4, (I will intend to store 4+3,+2 +1 = 10)

in hashMP put{3, (I willintend to store 3,+2 +1 =6)

in hashMP _put{(1, (We know from the configurations that 1 can only
appear in the dissection. There is not a valid hexagon which has 1 "bead"
in any rows below or above.. 5i | will simply store 0 here)

We know we will use 3 (R} rows:

Solam hoping hashiMP . get(M-1) - hashMP.get(M-{R+1)

Will give the actual value of "beads" above the dissection:
hashMP.get(6) - hashMP.get(3) = This is equivalent to abave
highlighted inblue =21-6=15

Now the totalwould be (15x2)+7 = 37

Mow just to verify if the memaoization can be used.
The nextN=5 M=9
It would need to performc

hashMP_containsKey(M-1) . It would not have the value for 8.

So itwould need to calculate this and store value

hashMap.put(8, hashMap.get(7)+8)

However we can see that hashMap.get(7) has not been populated yet also..

So we know that each time N has increased by 1,

It has to perform:

hashMap.put(M-1, M-1) = hashMap.put(8, 8+hashMap.get(7)) = 36
hashMap.put(M-2, M-2) = hashMap.put(7, 7+hashMap.get(6)) = 28

MNow hopefully it is ready to perform this calculation:
We know we will be using 4 rows

hashMP_get(M-1) - hashMP get{M-(R+1)
hashMP_get(8) - hashMP .get(S-(4+1)
hashMP_.get(8) - hashMP.get(4) = 36-10=26

Now the total would be (26 x2)+9= 61




I am now going to present this hexagon to see if it is valid.

9+ 26 +26=61

006000
006000
00600000

006000000

000000000
006000000

00600000
0060000
006000

Examples

hexLattice(1l) = " o "

// o

hexLattice(7) = " oo \nmoooi\n oo "
ff oo

// ooo

// oo

hexLattice(19) — " 000 \n oooo \noooool\n oooo \n 00 C
/7 00O
// oooo
//f ooooo
// oooo

/7 00O

hexLattice(21) — "Invalid"

Notes

N/A



