
************ OUTPUT ************************

*** INITIAL CODE (CONSISTENT WITH OUTPUT ABOVE)

// this first line is part of the pre-populated solution and can not be modified

// since the signature can not be changed, the parameter is limited to a single string. // In

order for recursion to work, it creates a tough scenario since there is no reference to an

index… And a recursive call to the method will not keep accountability of any incremented

variables..

// So on this instance, I did some research on the internet to understand a logistical way…

// The code presented here is a personal attempt, and I have tried demonstrate my rationale

public String changePi(String str) {

String newStart=null; // this will be used to pass into the recursive

call int pos; // this will hold index location of “pi”

if (str.indexOf("pi")!=-1)

{

// if it finds a match of pi

pos=str.indexOf("pi"); // this will hold index location of “pi”

if (pos<=str.length()-2) // this checks that index of pi can not appear no further in string

than following abcdpid

// pos is zero index… so in this instance, its value would be 4.

//length of string would be 7.. Hence it will not create another

newStart substring for a recursive call (4 < (7-2)

//However abcdpide is valid to perform another recursive call…

pos = 4 and length string = 8 (4 < (8-2))

{

newStart = str.substring(pos+2);

// the string holds the new start location to check again for pi

return “3.14” + changePi(newStart);

// this will now return 3.14 as per the challenge and then continue recursive call and search

again for pi

}

}

newStart=str.substring(1); // this is outside of the loop. It has not found “pi” in the string.

// so on this instance, it will continue from an index location further into the string. Since this

level of information can not be passed as a parameter, the String has to be truncated.

return str.charAt(0) + changePi(newStart); // this will return the first character in the

original string (since it has not found pi) and will continue remainder of the string….

}

--

I have tried to fix IndexOutofBound exception since it can be realized that I had no measure to

determine when to stop recursive calls.

if (newStart.length()>=2)

// now there is control that if the truncated string that is being passed into the method is at

least two characters in length…

{

newStart=str.substring(1); //the newStart can now be set to the second character based

on zero notation

return str.charAt(0) + changePi(newStart);

// this will now return the character (which does not meet the “pi” condition and start

recursively checking from the next character inline

}

return str; //if the string is 1 character or less, it can not be evaluated for “pi” substring,

hence entire string is returned……

}

My result was much improved:

I found only technique to remove nullpointer exception was related to my initialization of:

String newStart= null;

I adjusted this as follows:

String newStart= “ “;

However the execution was not entirely complete, but extremely close:

*** NEW CODE (CONSISTENT WITH OUTPUT ABOVE)

public String changePi(String str) {

String newStart= "";

int pos;

if (str.length()<2)

{

return str;

}

if (str.indexOf("pi")!=-1)

{

pos=str.indexOf("pi");

if (pos<=str.length()-2)

{

newStart = str.substring(pos+2);

return "3.14" + changePi(newStart);

}

}

if (newStart.length()>=2)

{

newStart=str.substring(1);

return str.charAt(0) + changePi(newStart);

}

return str;

}

*** NEW CODE (CONSISTENT WITH OUTPUT ABOVE)

I managed to find a solution to this problem… It was very tricky and perhaps without the

green and red flags, I would have never figured out how to solve this…

public String changePi(String str) {

 String temp= "";

 int pos;

 if (str.length()<2)

 {

 return str;

 }

 if (str.charAt(0)=='p' && str.charAt(1)=='i')

 {

 temp=str.substring(2);

 return 3.14 + changePi(temp);

 }

 return str.charAt(0)+changePi(str.substring(1));

