I have now finished modifying the code and it is in a compile free state.

I didn’t expect it to be functional logically so it is perfect opportunity to understand.

TEST CASE 1:

| have performed a search through all my screen outputs and there is no a single entry referring to this
block of code:

if (sb.toString().isEmpty() && hasCharFound && 'hasIncompletelLettersInStrings)

cationStrings))

ubstring containi + valuesSet[entry] t\tIndex("+counter+")");
.c,ut.pr-‘intln("**lxl#*l** E EE RS S S LR **Z*Z#**le#*l*?Z#*Z*le#*l**ll‘.":}J.

My best technique is just to simply analyse the applicable startPos and follow logic of my code:

String (s) to search in: abcdabed
String (p) template word: abd
FRdckickkrkR kR INITIAL VALUE OF CYCLES: @
FrRrddskxrkkRsrrkE Contents of the backup set
kool okkrkk xR *Contents of the valuesSet
ikl Rk ENEW VALUE CYCLES: 19
Faxdsks xRk RERUNNING TOTAL CYCLES: 19
***pROCESSING SET AT INDEX: ©

ENDING AT INDEX:*** g

Checking character: d against the main String index: ©(a)
SUBSTRING EXAMINED: abc

Checking character: d against the main String index: 1(b)
SUBSTRING EXAMINED: abc

Checking character: d against the main String index: 2(c)
SUBSTRING EXAMINED: abc

Checking character: d against the main String index: 3(d)
SUBSTRING EXAMINED: abc

char found: d at index: 3

last index location: 3

d has been removed from StringBuilder (String p)= dba /
This is current StringBuilder (String p): ba

Checking character: b against the main String index: 4(a)
SUBSTRING EXAMINED: ab
Checking character: b
SUBSTRING EXAMINED: abc

char found: b at index: 5
last index location: 5

b has been removed from Stri
This is current StringBuilder (String p): a

Checking character: a against the main String index: 6(e)
SUBSTRING EXAMINED: abc

Checking character: a against the main String index: 7(d)
SUBSTRING EXAMINED: abc

FOLLOWING LETTERS NOT MATCHED: a

StringBuilder being emptied: a

SRR R RCR R RO OR SRR OR RO R RO R R R R R R SRR R SRR R R SRR R R R RO R R R

t the main String index:

abcdabed is NOT a substring containing characters matching permutation:: dba Index (@)

e A A S S A e SRR)

TEST CASE 2:
Implementing changes:

= "abcdabead";

stem.out.println("String }-to-search in:
String- (p) template permutation word: " -+ sh);

+-5);

em.out.println{

his-is-now-incorrect. -We-want - to nine-ev ing - from-startPos - onwards

.println J N " 5. string(startPos));
if(sb.toString().length()>(s.length()-startPos))
I

s");

"+ -sb);

I will now run this test case and see if it reaches insufficient characters in String s

String (s) to search in: abcdabead

String (p) template permutation word: abd //| have taken this example since it matches template word,
but could have easily taken adb

SUBSTRING EXAMINED: abc //I am not sure why its showing this as substring since we expected it to be
every character from startPos. Even when scrolling down this screen output. | have expressed this in my
code.. Since it’s a massive screen output, | have remediated code and completed screen output again

I-required-fo
m.out.println(’

TEST CASE 3:

String (s) to search in: abcdabead

String (p) template permutation word: abd

Checking character: a against the main String index: 0(a)

SUBSTRING EXAMINED: abcdabead

charfound:a atindex: 0 //Thisis correct

last index location: O

a has been removed from StringBuilder (String p)=abd //This is correct
This is current StringBuilder (String p): bd

Checking character: b against the main String index: 1(b)

SUBSTRING EXAMINED: abcdabead

charfound: b atindex: 1//Thisis correct

last index location: 1

b has been removed from StringBuilder (String p)=bd //This is correct
This is current StringBuilder (String p): d

Checking character: d against the main String index: 2(c)
SUBSTRING EXAMINED: abcdabead

Checking character: d against the main String index: 3(d)
SUBSTRING EXAMINED: abcdabead

charfound:d atindex: 3 //Thisis correct

last index location: 3

d has been removed from StringBuilder (String p)=d //This is correct
This is current StringBuilder (String p):

kAhkkhkkhkAhkhkhkhkhkhkhkhkhkhkhhkhkhkhkkhkhrhkhkhkhkkhkkhkhkhkhkkhkkhkhkhkhkhkkhkdkhhkhkhkhkkhkhhkhkhkkkikihkhkkkikxk

abc is a substring containing characters matching permutation: abd Index(0) //Thereis a
mistake here, it should mention abcd and not abc
//We know that is infact since last index is exclusion, so need to increase the termination by 1

Khkhkhkhkhkhkkhkkhkhhhkhkhkkhkhkkhhhhhhkhkkhkhhkhhkhkhkkhkkhkhhhhhkhkkhkdhhkhhhkhkkhhhkhhhhkkhkikhrkx
This is minimum window: 9 //more clarity if stated current minimum window
String p (all characters) found within: String s (index: 0-3) //Thisis correct

---------- STORING WINDOW RESULT: 3); // //this isincorrect.. We need to
instead perform subtraction

(lastindexLocationStringS-startPos) +1 due to zero indexing
ROW NUMBER: 1

I have managed to include all my above thought process into the code...
The only aspect not analysed and perhaps it’s the most basic....

The biggest structural change was when running the first permutation template word and finding no
matches in String s.

Also when there were insufficient characters left in String s to ensure that characters of the template
word could be matched...

