| have continued coding until it has reached an error free state. | did notice that since | was heavily confused on
termination point for the do while.

Strictly speaking we know that in can never
reach the last character in String p (equivalent
to String y) with condition active..

This while loop would cut out lots executions
where String x is shorter than String y

| also removed
any relation to
this boolean

since we know
subsequence is
based on best

effort

Same principle again, this is
no longer applicable

(hasFirstMatch)

out.println N found: "+ sb.toString().charAt{pos) + "
out.prin "o+ ring(). (pos)

hasCharFound=F

(v) :xapur 2

s o R ok ok o o o o ok R o O R R KR R KRR R K R kR R R R ok R R R R Ok
(A 3uTJlS uo X2putr) 3Iduanbasqng

:32uanbasqnsg

(@-Q)XSpuT :MOpUTM pPaluasadd

@ :22uanbasqns wnwrxew yjsua]

1(X SuTJlsS) paydiewun sdaldedeyd SUTMOTTOH
(g8)xepu1 dapeq :uotrjelnuuad JuTydjew su3joedeyd SutuTejuod Butdisqns e JON ST T[T

x Bulns jo
Xapul aynjosqe
SMOYS IS)

.m:u_mr_._zmmcz.,.n;m
19)9B1EY3 OU 3B 313Y)
ULl WoJj paydjew

slaya| ou aauIs

B T T T T P R P e
8ZET :mod sTsATeue aouanbasqgng

X DNI ST STHL 23peq :(A DNTYLIS) NOTLVINWYId ST STHL

pajuasadd

ew-y33ua7, Juriutad- 1no
07104,)urjutud-1no
+J33UNod+,)XapuTly

255aNTeA -+ tu ‘] 5 E +- (50414e15)3uUTJd1Sqns s IT 1no

1no

a .
L (R I————————————————————————————_ ||| g 1} ¥]: b 1) V]
3ouanbasqgns, Jurjutad-no-

ouanbasqgns,, Jurjutdad-1no

+SSUTJISUOTIRIOTXAPUTISI T+ apuT -, 1 : T Ua53dd,, JUT3uTJd- 1n0
.nﬁgﬁschmmucmzwmwa:m u

+504]JB]S+ + - [Auqua]ysssantea +- - juoTjeinuaad - uTysjew su3}oedeyd SuTuTeluod - SuTalsqgns - |)3443d

((1+s8utulsuoriedo]xapurlser) ‘soglJels)sutalsqns - s)urutdd- 1no

1 .
H (R I———————————————————————— ||| g 11} s b 1)]

ERE SR E LSRR EE LSS EEE SR EEEE LS TR EEEEEE LR TR EE L]

(g) :xaput p (Z) :X3put 2 (T) :X3put q (@) :x3put e :(A SUTJ3S UO X3puT) 3duanbasgns

(x Buuys 03 Jusjeainba) s Buyg 3paqe :a3uanbasgns

W0l SeYsjeL oy} Jo uonenwnase Bumsab si syl (7-@)%Sput 3poge :(X BUTJIS) MOPUTM PIIUIS3Ud

a = S :9jusnbasqns wnwixew yiSua]

vJE . 0 PPE 0 © 03 ¢ :payoiewun sJsjoedeyd SuTmoTTO4
9)X3pul 3poqe :uotrieijnwdad Sutydlew sJda3dedeyd SuTuTeluod SUuTJISgNs 1D34Y3d B ST Ipoge

ERE SR E LSRR EE LSS EEE SR EEEE LS TR EEEEEE LR TR EE L]

JuT3uTad-3no

27,)uT3utdd-1no
f([t][moua]saouanbasqgns -+ : } | 07704, JuT3utdd-1no
q T THuT

uoneinwuad sy} 10) Husqns 19941ad B SMOYS Ul ‘MOjaq S 995 UBD I

uonipuo? Ji ay}
8pISUI WoJ) SUBS|00(8y} JO [|e 8AOWSI 0) pey | JoASMOoY ‘8s1949Xa snolaaid 0} apod Jo ajf1s Jejuis e paldepe

if (hasCharFound Isb.toString().isEmpty()) l";:e'?sﬁdzgm :;f::i :Z’T‘Or:l‘:“m&a h
in the sizes of String y and String x

tem.out. printin(“Follo ette ire re ort subsequence: "+ sb + "

8,sb.length());

m.out.println(“Length subse ce: " + lengthSubsequence + " * 4+ (lengthSubsequence-sb. length()))s We are examining index(4)
which is the final character

THIS IS PERMUTATION (STRING Y): aba THIS IS STRING X: a
Subsequence analysis row: 4 We can see that it correctly finds a
char found: a at String X index: 4 match
char found: a at String Y index: @ ength()-sb.length()));
a has been removed from StringBuilder (String p)= aba
This is current StringBuilder (String p): ba

sk sk sk s sk o ok sk sk ok R ok R ok sk ok R sk R e ok o sk ok ok R ok o ok sk ok R ok ok ok o ok o ok R ok sk ok ok ok R ok sk ok ok R ok ok

Using this technique to

understand number chars

found (by tracking against

a is NOT a substring containing characters matching permutation: aba Index(4) ‘9”9“1!0{}9‘“&‘ S'Zeffd‘he
3 q . permutation presented)

Following (;har'acters unmatched (String X): This is perfectly fine |

Length maximum subsequence: 1

Presented window: a index(4-4)

Subsequence: a This is clear indication of the subsequence and its index
Subsequence (index on String Y): a index: (@) on String Y.. Note that
R R Rk

T e T FEEFEEEEE

Following letters require removal {String Y) t
Length subsequence: 1 => 1

upport subsequence: ba index (1 - 2) (length: 2)

We remove these extra characters from
String Y and it should have no affect
on length of subsequence

subsequences[row][5].add(String.valueOf(sb.toString().charAt(pos))+ "

Itis a slightly more involved concept to gather this information notably the index on String Y. Up to this point in my code, we only used pos=0 which always referred to
index 0 of String ply (which is stored in the Stringbuilder). But we know that sb is immutable and characters are being removed....

| had option to either track another variable capturing everytime it had processed a char. ALTERNATIVELY this value is derived from difference in length between original
String p and the existing length of StringBuilder (holding String p).

CHATGPT CONVERSATION

in subsequences, can string p be shorter than string s

Yes — and that’s the normal case.
Subsequence basics

A string p is a subsequence of s if you can delete some characters from s (without reordering the remaining ones)
and get p.

So for p to be a subsequence of s, you must have:
e len(p)<len(s)
If len(p) > len(s), then p cannot be a subsequence of s.
Examples
e p="ace"is asubsequence of s="abcde" (take a,c,e).
e p="abc"is not a subsequence of s="acb" (order doesn’t work).
e p="abcd" cannot be a subsequence of s="abc" (too long).

If you meant your other setup (delete from p to make it appear in s), then even if p is longer than s, you can still delete
from p until the remaining subsequence fits inside s.

This was amongst my first changes in order to
reduce code...

I quickly found areas referring to identifying
MINIMUM....

| just continued to use the store array in relation to
Maximum..

Otherwise there would be massive areas of
confusion.

With all this extreme hard effort, | was at a point where the single test case was failing...

| particularly found this a scenario which would be extremely difficult to isolate.

Itis reminiscent of level of issues | encountered on several challenges in which there was a mismatch between mid-
execution and summary at the end.

Here is the exact test case:

TEST CASE: Mismatch in output mid-execution and summary

THIS IS PERMUTATION (STRING Y): abb THIS IS STRING X: bcab

Subsequence analysis row: @

Checking character: a against String X index: 0(b)

Checking character: a against String X index: 1(c)

Checking character: a against String X index: 2(a)

char found: a at String X index: 2 ALL DATA HAS
char found: a at String Y index: @ POPULATED

a has been removed from StringBuilder (String p)= abb PROPERLY DURING
This is current StringBuilder (String p): bb

Checking character: b against String X index: 3(b) MID-EXECUTION
char found: b at String X index: 3

char found: b at String Y index: 1

b has been removed from StringBuilder (String p)= bb

This is current StringBuilder (String p): b

*REXNOW STORING subsequence length: 2

ERR RO KRR R KR KRR KRR X R KO K £ X

bcab is NOT a substring containing characters matching permutation: abb Index(@)
Following characters unmatched (String X):

Length maximum subsequence: 2

Presented window: ab index(2-3)

Subsequence: ab

Subsequence (index on String Y): a index: (@) b index: (1)

SRR R RO OO OO OR R OIOR OO OO OO OO RO OO

Following letters require removal (String Y) to support subsequence: b index (2 - 2) (length:
Length subsequence: 2 => 2

But if we examine the data during the code execution, we can see that there are no
issues. This is almost close to an impossible issue to solve at human capacity since
it is so difficult to calculate where the branching would differ with other test cases

ONLY FOR THIS
y TEST CASE, WE

CAN SEE THATIT

Processing row: 3 of subsequence data HAS NOT
CHECK1: ab index(2-3) is a substring NOT containing characters matching permutation: abb(Window size: 2) POPULATED
CHECK2: bcab index(®-3) is a substring NOT containing characters matching permutation: abb(Window size: 4) INFORMATION IN

THE LOWER PART

becab index(@-3) is a substring NOT containing characters matching permutation: abb(Window size: 4)
Following characters unmatched: AT SUMMARY PART
Length maximum subsequence: @ subsequence: OF CODE
Presented window (String X): EXECUTION
Subsequence:

Subsequence (index on String Y):

| have let ChatGPT examine my code for the first time.
Once again, one or two were human errors which | might have noticed if | tidied my code.
But there were several changes....
Note, some modifications with the usual ------------ chatGPT-------------
------------ end ChatGPT---------
are the modifications from the inclusion of String p in String s

I will go through each of the inputs by ChatGPT to demonstrate my understanding. As per aforementioned, it is logic
which does not resonate with me.

1) CHATGPT CHANGE (I consider this as highly
technical, it refers to my immediate issue above)

do

{
i
// This program stores subsequence results into: subsequences[rowj[@..S]J
//
// In your loop, it is possible to analyse multiple attempts (different start positions / same permutation)
// WITHOUT incrementing 'row' yet.

/7
// If we re-create new StringJoiner objects every time the loop iterates, like:
1/ subsequences[row][@] = new Stringloiner(...);

// then we WIPE the row that may already contain valid stored data from an earlier attempt.
// That produces the exact symptom you saw:

// - correct data printed mid-execution ("NOW STORING length: 2", subsequence "ab")
I/ - but blank/e data later, because the same row was re-initialised afterwards.
7/

// So we only initialise a row ONCE (first time it is used).
// After that, we only ADD to it or leave it unchanged.
// That is what the null-check guarantees.
fHff==sssoscsssssoosssosssosssoossossossonssoososooasoRssooSsSos
if (subsequences[row][@] == null) {
subsequences[row][@] = new Stringloiner("\t\t"); // per-char matched display (or summary)
subsequences[row][1] new StringJloiner("\t\t"); // unmatched chars display

subsequences[row][2] = new Stringloiner(""); // window string / window info
subsequences[row][3] = new Stringloiner(""); // length field (numeric)
subsequences[row][4] = new Stringloiner(""); // subsequence string
subsequences[row][5] = new Stringloiner("\t\t"); // indices in String Y
} We know that counter keeps
//----END CHATGPT---- increasing... and it denotes starting
/* position of substring of String X...
subsequences[row][@]=new StringJoiner("\t\t"); And it continues working on same
subsequences[row][1]=new Stringloiner("\t\t"); permutation...)
subsequences[row][2]=new Stringloiner(""); So itis extremely difficult to

understand why the null check
decides if the StringJoiner should
be wiped. | would have expected
lots of my other test cases to fail.
AND since ONLY single test case, |
would have NEVER explored this a

Jwhile(counter<s.length()); underlying issue.

subsequences[row][3]=new Stringloiner("");
subsequences[row][4]=new Stringloiner("");
subsequences[row][5]=new Stringloiner("\t\t");
*/

5) Why the null-check is the safe choice

The null-check doesn't stop you from storing new attempts — it only stops you from accidentatly wiping a

row that already exists.

CHATGPT

Design B (one row reused until you decide to finalise):

¢ you keep refining or updating “best” data in the same row across attempts
s row only advances when you finalize/store a new record

¢ then reinitialising joiners every attempt is NOT fine (it wipes the accumulated record)
Your current behavior is closer to Design B in some paths, which is why the safe rule is:

Don't wipe the row unless you‘ve moved to a new row.

So it’s totally possible for the program to do 10 attempts (counter 0..9) while still writing to subsequences[row] where
row stayed the same.

2) How can the “same row” be used until the loop exits?

Because many parts of your code are built like this pattern:
e setupvariables
® runan attempt
e maybe store aresult
e restore/reset some variables
® increment counter

e tryagain

2) CHATGPT CHANGE (I consider this as highly
technical, it refers to my immediate issue above)

//----CHATGPT----
// Do not overwrite an existing stored length for this row.
if (subsequences[row][3] == null || subsequences[row][3].toString().isEmpty())
{
subsequences[row][3]=new Stringloiner("\n");
subsequences[row][3].add(String.value0f(lengthSubsequence));

}
//----END CHATGPT----

| added that guard for one specific reason: your code was sometimes writing multiple times into the same row,

and a later “worse” attempt (or an empty/0 attempt) could overwrite a earlier “good” stored length for that row.

So this block was meant to enforce your Option (1) policy:

Once a row has a stored subsequence length, don’t let later loop iterations wipe it.

The situation it was protecting against

Inside a single permutation you do multiple attempts (different counter / startPos). In your design, it’s possible to:

1. Find a good subsequence early (e.g., length 2) and store it in subsequences[row]

2. Continue looping without incrementing row

3. Later attempt stores length 0/blank (or just re-initialises) and overwrites the good length

That produces the exact symptom you saw earlier:

e correct data printed mid-execution

. blank/0 data at the end

The guard stops the second store from replacing the first.

When this guard is not appropriate

If your current design is:

e “store every attempt as a new row” (so row++ happens for each attempt)

then you don’t need this guard at all, and it can actually hide useful updates.

Also, if you actually want the best length for a row (not just the first length), then the guard should be different:

. update only if lengthSubsequence > existinglLength

The best version depends on your row meaning

. Row = one attempt > remove this guard

(] Row = best attempt for a permutation > change guard to “overwrite only if better”

(] Row = first stored result and never change > current guard matches that

3)CHATGPT CHANGE (I consider this as highly
avoidable)

You’ve basically already found the root cause in your own logs:

e Your debug trace shows you successfully matched a (index 0 in String Y) and b (index 1 in String Y) for
permutation abb inside becab.

e Sothe maximum subsequence length should be 2 and the subsequence should be ab.

The reason your final “subsequence” section ends up showing length 0 / empty subsequence is because in your
uploaded file Main(192).java, the variable:

int lengthSubsequence=0;

is never updated anywhere before you store it into:

subsequences[row][3].add(String.valueOf(lengthSubsequence));

So it stores 0, and your final summary prints 0 / blank even though the match logic worked.

Minimal fix (1 line of logic + comments)

Right before this line:

System.out.println("****NOW STORING subsequence length: " + lengthSubsequence);

set:

lengthSubsequence = p.length() - sb.length();

Why this works:

e You delete one char from sb every time you find a match.

e Sop.length() - sb.length() = number of matched characters = matchedLength.

matched-c

e = p.length() - sb.

was previously looking at te
tto String. And my intentio
occured.. And unfortunately a
calculation which chatGPT completed!

4)CHATGPT CHANGE (1 ALSO CONSIDER THIS AS HIGHLY

AVOIDABLE)

It can be seen that |

have reset the same
variable twice... This
was again a human

error.

tting lastInd

hasFirstMatch=fz
counter++;

In my previous challenge, same error transpired.

g mm e e e ey ,-

¥
//System.out.println("*****RESTORING BACKUP OF STRINGBUILDER (String p): " + valuesSet[entry]);

sb=new StringBuilder(valuesSet[entry]); 1 have exact same error in inclusion of a String in a
hasCharFound=false; String challenge. And it went totally undetected and
hasIncompletelettersInStringS=false; it has not had impact anywhere....
firstIndexLocationStringS=8; *——___,__ This is massive side effect of re-usable code...
Perhaps since the value (lastindexLocation Strings)

firstIndexLocationStrings=e; is more readily overwritten in this challenge

counter++; compared to subsequences, it has gone unnoticed
by myself and also chatGPT

CHATGPT

You’ve actually exposed the real bug in your own output: this isn’t a subsequence-matching problem at all —it’s a
stale index reset bug that only shows up on some rows.

What’s happening
Row 4 for permutation abb is correct:
e subsequence length 2
e subsequence ab
e window ab index(2-3)
Row 7 later prints:
e bcabindex(0-3) ... permutation: abb
e butsubsequence fields are blank / length 0
That means:
e the subsequence fields for that attempt truly ended up empty (no match for that attempt), BUT

e the printed index(0-3) window is wrong and comes from stale lastindexLocationStringS from an earlier
attempt.

The exact bug in your code

You reset this twice:
firstindexLocationStringS=0;
firstindexLocationStringS=0;

So you never reset lastindexLocationStringS.

That causes exactly what you’re seeing: later attempts can print windows like index(0-3) even though they didn’t find
any new match, because lastindexLocationStringS is still sitting at 3 from a previous match.

Fix: replace the second line with:
lastindexLocationStringS=0;

And wrap itin your markers so it’s obvious.

5)CHATGPT CHANGE (I CONSIDER THIS AS TECHNICAL
CHANGE)

// WHY THIS CHANGE WAS MADE (simple explanation)

// Your original code worked when every row had a valid numeric subsequence length.
// But in your design, some rows can legitimately be:

/7 - null (no data stored for that row slot), or
/7 - blank (you stored the row but the length field ended up empty for a failed attempt).
1/

// In those cases, this original line can crash the program:
// Integer.valueOf(subsequences[c][3].toString())

1/

// because it can throw:

// - NullPointerException (if subsequences[c][3] is null)
1/ - NumberFormatException (if it's empty or non-numeric)
1/

// So I replaced it with a "safe max update":
// 1) Check the length field is not null
// 2) Trim it and ensure it is not empty
// 3) Parse it only when it's valid

// This keeps your output logic the same (still finds the true maximum),
// but prevents rare/edge rows from breaking the whole run.

// The original code is kept below in a /* ... */ block for reference.
//==
// Safe max update: some rows may have null/blank lengths; skip those.
if (subsequences[c][3] != null) I did not actually
{ experiemce any
String _lenStr = subsequences[c][3].toString().trim(); issues with my
if (!_lenStr.isEmpty()) COde”‘B“f‘tm”K
{ Safeguarding
int _len = Integer.parseInt(_lenStr); against
if (_len > maximumhWindow) something... | still
{ think its code is
maximumWindow = _len; very complex and
} in future itis
} perhaps Keeping
} my existing code
and using the
/% exception
handling should |
ORIGINAL CODE (kept for r‘e‘Fer‘enCE) Encounterany test

-------------------------------- cases failing..
if((Integer.valueOf(subsequences[c][3].toString())>=maximumWindow))

maximumWindow= Integer.valueOf(subsequences[c][3].toString());
¥
*/
//----END CHATGPT----

So my immediate response was to ask ChatGPT on test cases in which my existing code
(yellow) would cause exceptions...

An option for me is to remove its code and re-instate mine:

CHATGPT CONVERSATION

could you provide test cases that would give exception (if | kept my code active instead of yours)

Yes — your original max-update line can throw NullPointerException or NumberFormatException depending on
what ends up in subsequences[c][3].

Your original code:
if((IntegervalueOf(subsequences[c][3].toString())>=maximumWindow))
{
maximumWindow= Integer.valueOf(subsequences[c][3].toString());
}
When it breaks
e NullPointerException if subsequences[c][3] == null
e NumberFormatException if subsequences[c][3].toString() is "", " ", "\n", etc.

Because your program stores rows for “not containing permutation” attempts and some of those rows can end up
with length not populated (depending on branch/early exit), these situations happen on certain inputs.

Test case set that commonly creates null/blank length rows
1) No character of p exists in s (lots of “0 match” attempts)
String p = "abc";
String s = "zzzzzz";
Why it can break:

e Many attempts never match anything.

e Depending on your branch logic, you may still create a row but never add a length > subsequences[row][3]
stays null or empty.

2) s is shorter than p (your subsequence logic stores “failed” rows)
String p = "abcd";
String s = "ab";
Why it can break:
e Youterminate attempts early due to insufficient characters.
e Some branches print debug but don’t store a numeric length string.

3) p has repeats, s has only one occurrence (partial matches + early termination)

String p = "aaab";
String s="a";
Why it can break:
e You match at most 1 char.

e Some permutations/attempts can produce blank length if the “store length” line is not executed on that
path.

4) Empty-ish s (fast failure paths)
String p = "ab";
Strings="";
Why it can break:
e Your code likely exits earlier in some paths; any partially initialised row can leave length null/blank.

nn

(If your code blocks empty s earlier, use s=""or s="x",)
A more “realistic” reproducer based on your earlier style
This one tends to generate a mix of:
e good subsequences
e androws where some fields were never written (depending on startPos)
String p = "abb";
String s ="bcab"; //you’ve already seen mixed outcomes here

If any row is created but subsequences[c][3] isn’t populated in one branch, your original max-update line will fail.

How to force the exception quickly (if you want proof)
If you temporarily add one debug line right before your original max-update loop:
System.out.println("DEBUG len raw =[" + subsequences[c][3] + "]");
and you see:
e DEBUG len raw = [null] » original code will throw NullPointerException

e DEBUG lenraw =[] or[]~ original code will throw NumberFormatException

6)CHATGPT CHANGE (I1CONSIDER THIS AS SLIGHT
USER EXPERIENCE CHANGE AND ALSO STRAIGHT
FORWARD HUMAN ERROR) - this is line regarding
maximum......

//----CHATGPT----
// Moved this print to AFTER we compute maximumwWindow from stored subsequence lengths.
// Previously it printed © because maximumWindow was still at its initial value here.
/*

System.out.println("This is current longest subsequence: " + maximumWindow);
*/
//----END CHATGPT----

t had moved the s .out.println lower down after it had computed the
maximumWindow via s ing vs. This is most likely an error
due to extreme fatigue and working in early morning hours...

Also, we can see having variable maximumWindow is highly misleading for

asbeeatence challen
subsequence challe

J

C

onStringS-firstIndexLocationS

minimumiWindow=- (lastIndexLocatio

dow) ;
"+ -minimumindow) ;
"+ maximumblindow) ;

You're right — in your current file you print the “current longest subsequence” before you actually calculate

it, so it naturally shows 0, even though later rows have lengths 1/2/3.
What's wrong in the code
In Main192_subsequence_fix_optionl_v2.java, you have:
java) Copy code

n

System.out.println("This is current longest subsequence: + maximumWindow);

for (int c=0; c<row; c++)

{
if ((Integer.valueOf(subsequences[c][3].teString()) »>= maximumWindow))
{
maximumWindow = Integer.valueOf(subsequences[c][2].toString());
}
}

So the print happens while maximumWindow is still its initial value (0).

Only after that do you compute it.

Minimal fix | applied

1. Commented out the early print.

2. Moved the print to after the loop that computes the maximum.

