
I have continued coding until it has reached an error free state. I did notice that since I was heavily confused on
termination point for the do while.

CHATGPT CONVERSATION

in subsequences, can string p be shorter than string s

Yes — and that’s the normal case.

Subsequence basics

A string p is a subsequence of s if you can delete some characters from s (without reordering the remaining ones)
and get p.

So for p to be a subsequence of s, you must have:

• len(p) ≤ len(s)

If len(p) > len(s), then p cannot be a subsequence of s.

Examples

• p="ace" is a subsequence of s="abcde" (take a,c,e).

• p="abc" is not a subsequence of s="acb" (order doesn’t work).

• p="abcd" cannot be a subsequence of s="abc" (too long).

If you meant your other setup (delete from p to make it appear in s), then even if p is longer than s, you can still delete
from p until the remaining subsequence fits inside s.

With all this extreme hard effort, I was at a point where the single test case was failing…
I particularly found this a scenario which would be extremely difficult to isolate.
It is reminiscent of level of issues I encountered on several challenges in which there was a mismatch between mid-
execution and summary at the end.
Here is the exact test case:

TEST CASE: Mismatch in output mid-execution and summary

I have let ChatGPT examine my code for the first time.
Once again, one or two were human errors which I might have noticed if I tidied my code.
But there were several changes….
Note, some modifications with the usual ------------chatGPT-------------
 ------------end ChatGPT---------
are the modifications from the inclusion of String p in String s

I will go through each of the inputs by ChatGPT to demonstrate my understanding. As per aforementioned, it is logic
which does not resonate with me.

1) CHATGPT CHANGE (I consider this as highly
technical, it refers to my immediate issue above)

CHATGPT

So it’s totally possible for the program to do 10 attempts (counter 0..9) while still writing to subsequences[row] where
row stayed the same.

2) How can the “same row” be used until the loop exits?

Because many parts of your code are built like this pattern:

• set up variables

• run an attempt

• maybe store a result

• restore/reset some variables

• increment counter

• try again

2) CHATGPT CHANGE (I consider this as highly
technical, it refers to my immediate issue above)

I added that guard for one specific reason: your code was sometimes writing multiple times into the same row,
and a later “worse” attempt (or an empty/0 attempt) could overwrite a earlier “good” stored length for that row.

So this block was meant to enforce your Option (1) policy:

Once a row has a stored subsequence length, don’t let later loop iterations wipe it.

The situation it was protecting against

Inside a single permutation you do multiple attempts (different counter / startPos). In your design, it’s possible to:

1. Find a good subsequence early (e.g., length 2) and store it in subsequences[row]

2. Continue looping without incrementing row

3. Later attempt stores length 0/blank (or just re-initialises) and overwrites the good length

That produces the exact symptom you saw earlier:

• correct data printed mid-execution

• blank/0 data at the end

The guard stops the second store from replacing the first.

When this guard is not appropriate

If your current design is:

• “store every attempt as a new row” (so row++ happens for each attempt)

then you don’t need this guard at all, and it can actually hide useful updates.

Also, if you actually want the best length for a row (not just the first length), then the guard should be different:

• update only if lengthSubsequence > existingLength

The best version depends on your row meaning

• Row = one attempt → remove this guard

• Row = best attempt for a permutation → change guard to “overwrite only if better”

• Row = first stored result and never change → current guard matches that

3)CHATGPT CHANGE (I consider this as highly
avoidable)
You’ve basically already found the root cause in your own logs:

• Your debug trace shows you successfully matched a (index 0 in String Y) and b (index 1 in String Y) for
permutation abb inside bcab.

• So the maximum subsequence length should be 2 and the subsequence should be ab.

The reason your final “subsequence” section ends up showing length 0 / empty subsequence is because in your
uploaded file Main(192).java, the variable:

int lengthSubsequence=0;

is never updated anywhere before you store it into:

subsequences[row][3].add(String.valueOf(lengthSubsequence));

So it stores 0, and your final summary prints 0 / blank even though the match logic worked.

Minimal fix (1 line of logic + comments)

Right before this line:

System.out.println("****NOW STORING subsequence length: " + lengthSubsequence);

set:

lengthSubsequence = p.length() - sb.length();

Why this works:

• You delete one char from sb every time you find a match.

• So p.length() - sb.length() = number of matched characters = matchedLength.

4)CHATGPT CHANGE (I ALSO CONSIDER THIS AS HIGHLY
AVOIDABLE)

In my previous challenge, same error transpired.

CHATGPT

You’ve actually exposed the real bug in your own output: this isn’t a subsequence-matching problem at all — it’s a
stale index reset bug that only shows up on some rows.

What’s happening

Row 4 for permutation abb is correct:

• subsequence length 2

• subsequence ab

• window ab index(2-3)

Row 7 later prints:

• bcab index(0-3) ... permutation: abb

• but subsequence fields are blank / length 0

That means:

• the subsequence fields for that attempt truly ended up empty (no match for that attempt), BUT

• the printed index(0-3) window is wrong and comes from stale lastIndexLocationStringS from an earlier
attempt.

The exact bug in your code

You reset this twice:

firstIndexLocationStringS=0;

firstIndexLocationStringS=0;

So you never reset lastIndexLocationStringS.

That causes exactly what you’re seeing: later attempts can print windows like index(0-3) even though they didn’t find
any new match, because lastIndexLocationStringS is still sitting at 3 from a previous match.

 Fix: replace the second line with:

lastIndexLocationStringS=0;

And wrap it in your markers so it’s obvious.

5)CHATGPT CHANGE (I CONSIDER THIS AS TECHNICAL
CHANGE)

So my immediate response was to ask ChatGPT on test cases in which my existing code
(yellow) would cause exceptions…

An option for me is to remove its code and re-instate mine:

CHATGPT CONVERSATION

could you provide test cases that would give exception (if I kept my code active instead of yours)

Yes — your original max-update line can throw NullPointerException or NumberFormatException depending on
what ends up in subsequences[c][3].

Your original code:

if((Integer.valueOf(subsequences[c][3].toString())>=maximumWindow))

{

 maximumWindow= Integer.valueOf(subsequences[c][3].toString());

}

When it breaks

• NullPointerException if subsequences[c][3] == null

• NumberFormatException if subsequences[c][3].toString() is "", " ", "\n", etc.

Because your program stores rows for “not containing permutation” attempts and some of those rows can end up
with length not populated (depending on branch/early exit), these situations happen on certain inputs.

Test case set that commonly creates null/blank length rows

1) No character of p exists in s (lots of “0 match” attempts)

String p = "abc";

String s = "zzzzzz";

Why it can break:

• Many attempts never match anything.

• Depending on your branch logic, you may still create a row but never add a length → subsequences[row][3]
stays null or empty.

2) s is shorter than p (your subsequence logic stores “failed” rows)

String p = "abcd";

String s = "ab";

Why it can break:

• You terminate attempts early due to insufficient characters.

• Some branches print debug but don’t store a numeric length string.

3) p has repeats, s has only one occurrence (partial matches + early termination)

String p = "aaab";

String s = "a";

Why it can break:

• You match at most 1 char.

• Some permutations/attempts can produce blank length if the “store length” line is not executed on that
path.

4) Empty-ish s (fast failure paths)

String p = "ab";

String s = "";

Why it can break:

• Your code likely exits earlier in some paths; any partially initialised row can leave length null/blank.

(If your code blocks empty s earlier, use s=" " or s="x".)

A more “realistic” reproducer based on your earlier style

This one tends to generate a mix of:

• good subsequences

• and rows where some fields were never written (depending on startPos)

String p = "abb";

String s = "bcab"; // you’ve already seen mixed outcomes here

If any row is created but subsequences[c][3] isn’t populated in one branch, your original max-update line will fail.

How to force the exception quickly (if you want proof)

If you temporarily add one debug line right before your original max-update loop:

System.out.println("DEBUG len raw = [" + subsequences[c][3] + "]");

and you see:

• DEBUG len raw = [null] → original code will throw NullPointerException

• DEBUG len raw = [] or [] → original code will throw NumberFormatException

6)CHATGPT CHANGE (I CONSIDER THIS AS SLIGHT
USER EXPERIENCE CHANGE AND ALSO STRAIGHT
FORWARD HUMAN ERROR) – this is line regarding
maximum……

It has been moved correctly here:

