ALL SUBSEQUENCE MODE OF OPERATIONS

Subsequence modes beyond “prefix-only”

1) Prefix-subsequence of Y in X (what your current design behaves like)
e Youtryto matchY from Y[0] onward in order.
e |fY[0] doesn’t match anywhere, you report length 0.

e Thisis: “How much of Y can | match starting from the beginning?”

Useful when:
e Yisacommand sequence / protocol header

e you only care if the sequence “starts correctly”
Example:

e Y="ba", X="a" > length O (because it doesn’t start with b)

2) Best subsequence of Y in X (delete any characters from Y, including the front)

® Youcandrop any chars from Y to maximise what remains in X.

e Thisis the “true” longest subsequence (LCS variant when X fixed and order preserved).
Example:

e Y="ba",X="a"~>"a"length 1

This is what you thought you were doing, but it conflicts with your prefix gate.

3) Best subsequence of Y in X within a window (windowed subsequence)
e Same as #2, but you require the matched characters in X to lie inside a window X][i..j]

e Thenyou optimise either:
o longest subsequence, or
o smallest window for a given subsequence length

This pairs naturally with your “minimum / maximum window” mindset.

4) Longest common subsequence (LCS) between Xand Y
e Both sides can “skip” characters.
e Thisis the classic dynamic programming problem.
Example:
e X="bcab", Y="abb" > LCSis "ab" (length 2)

This is the cleanest mathematically, but it’s a different engine than your current scanning approach.

5) Longest common substring (contiguous, not subsequence)
e Must be continuous block in both strings.

® Much stricter than subsequence.

Often confused with subsequence, but totally different.

6) Approximate / edit-distance matching
Instead of “delete-only”, allow:

(] insertions, deletions, substitutions
Score results by Levenshtein distance.

Useful when:

e typos, OCR noise, fuzzy matching

7) Constrained subsequence (anchored / must-include)

Examples:
e mustinclude the first character of Y (your current mode)
e mustinclude last character
e mustinclude a specific set of “required” characters
® must match at least K characters

This is common in rule engines.

Which modes fit your design best?
Your code is naturally good for:
e Mode 1 (prefix-subsequence) and
e Mode 3 (windowed subsequence with constraints)

It’s not naturally suited to Mode 2/4 without a redesign, because those require the matcher to freely skip inside Y
(including leading chars) and keep consistent bookkeeping.

