
ALL SUBSEQUENCE MODE OF OPERATIONS 

 
Subsequence modes beyond “prefix-only” 

1) Prefix-subsequence of Y in X (what your current design behaves like) 

• You try to match Y from Y[0] onward in order. 

• If Y[0] doesn’t match anywhere, you report length 0. 

• This is: “How much of Y can I match starting from the beginning?” 

Useful when: 

• Y is a command sequence / protocol header 

• you only care if the sequence “starts correctly” 

Example: 

• Y="ba", X="a" → length 0 (because it doesn’t start with b) 

 

2) Best subsequence of Y in X (delete any characters from Y, including the front) 

• You can drop any chars from Y to maximise what remains in X. 

• This is the “true” longest subsequence (LCS variant when X fixed and order preserved). 

Example: 

• Y="ba", X="a" → "a" length 1 

This is what you thought you were doing, but it conflicts with your prefix gate. 

 

3) Best subsequence of Y in X within a window (windowed subsequence) 

• Same as #2, but you require the matched characters in X to lie inside a window X[i..j] 

• Then you optimise either: 

o longest subsequence, or 

o smallest window for a given subsequence length 

This pairs naturally with your “minimum / maximum window” mindset. 

 

4) Longest common subsequence (LCS) between X and Y 

• Both sides can “skip” characters. 

• This is the classic dynamic programming problem. 

Example: 

• X="bcab", Y="abb" → LCS is "ab" (length 2) 

This is the cleanest mathematically, but it’s a different engine than your current scanning approach. 



 

5) Longest common substring (contiguous, not subsequence) 

• Must be continuous block in both strings. 

• Much stricter than subsequence. 

Often confused with subsequence, but totally different. 

 

6) Approximate / edit-distance matching 

Instead of “delete-only”, allow: 

• insertions, deletions, substitutions 
Score results by Levenshtein distance. 

Useful when: 

• typos, OCR noise, fuzzy matching 

 

7) Constrained subsequence (anchored / must-include) 

Examples: 

• must include the first character of Y (your current mode) 

• must include last character 

• must include a specific set of “required” characters 

• must match at least K characters 

This is common in rule engines. 

 

Which modes fit your design best? 

Your code is naturally good for: 

• Mode 1 (prefix-subsequence) and 

• Mode 3 (windowed subsequence with constraints) 

It’s not naturally suited to Mode 2/4 without a redesign, because those require the matcher to freely skip inside Y 
(including leading chars) and keep consistent bookkeeping. 

 


