This test case triggered lots inquisitiveness and it made me realise that even in the
example given in Programiz, it had performed deletion from within String Y once it had
found its first match...

For this input

"ABCBDAB™
= "BDCAB"

We can see the operatio

s completed once it had already found
his is where my mentality / design has been structured

the result should be: a prefix B.
around

Reason: The longest common subsequence of “ABCBDAB* and "BDCAB™ is

"BcAB” , which has a length of 4.

So | find myself in the exact same boat with my design, which is actually called
‘longest prefix subsequence’

lets try strategy A MY QUESTION TO CHATGPT

But befare you go ahead, lets try to understand first again:

String p="ba" is longer than String s="a"
If this is not permissible, then changing code will serve no purpose For cases like this, we can see
how this will be challenging in

my code.. It would have
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loop having processed single
THIS IS PERMUTATION (STRING Y): ba THIS IS STRING X: character in String X.
Subsequence analysis row: We would all of a sudden have
Checking character: b against String X index: 1(a) to control what is written inside

char NOT found: b at String X index: (1) ¢ -
enar ourc at String X index: (1) a subsequences array. It is

extremely challenging and

Adding: a index(1l) as unmatched

Adding: a as running window - -
e e e chatGPT has identified that my

code

CPTis corre i
Here's what needs to change (conceptually) to make p="ba" and s="a" produce subsequence "a" instead igggdm;ﬁ;ﬂ?';;d since!
hasFirstMatch to ensure
of blank. that characters are only
removed from String Y
ONLY if it has found first
match. And to make issues
even more frickier, lam
. . . . confronted with a single
"l can only start matching after the first character of Y (index 0) is matched.” character in String s .

Right now your subsequence logic behaves like:

That is exactly “longest prefix-subsequence” (match must start at Y[0]).

You want instead:

“| can delete characters anywhere in Y, including at the beginning, so the subsequence can start at any Y
index.”

That means your matcher must be able to skip leading characters of Y.

It is permissible for your goal.

You're not asking: “Is p a subsequence of s with no changes?”

You're asking: “What is the longest subsequence of p that appearsin s (by deleting from p)?"
Under that definition:

e p can be longer than s

* because you're allowed to delete characters from p until what remains fits inside s



So ChatGPT has given me an insight into longest subsequence of p.

But it becomes more confusing, since | know that with:
prefix longest subsequence (my design)

String p =”ba” and String s =“a”

I would explore ba and ab

So, lwould find the length subsequence =1 using String p=ab Strings=a
I would find length subsequence= 0 using String p =ba

With
longest subsequence (suggested by ChatGPT)
I would explore ba and ab

So, lwould find the length subsequence =1 using String p=ab

I would find length subsequence= 0 using String p =ba

BUT using resilience, it would also identify length subsequence =1 using String
pa = ba (starting at index 1)

Strategy A — simplest with minimal disturbance: “try all starting positions in Y”

For each permutation Y:

« run your existing subsequence matcher multiple times:
« attempt starting at Y index 0
e attempt starting at Y index 1
« attempt starting at Y index 2

. .

+ choose the best matched result

This guarantees "ba™ in "a" works, because the attempt starting at Y index 1is "a" .

Pros: very small conceptual change

Cons: repeats work (but p is small, so OK)

So this raised a very interesting question, why would we want this to appear given that
prefix approach canidentify  String p=ab String s=a (length subsequence =1)
We have to remember that | use permutations of String p to facilitate all this...

Here is question to ChatGPT and response:



