This test case triggered lots inquisitiveness and it made me realise that even in the
example given in Programiz, it had performed deletion from within String Y once it had
found its first match...

For this input

"ABCBDAB™
= "BDCAB"

We can see the operatio

s completed once it had already found
his is where my mentality / design has been structured

the result should be: a prefix B.
around

Reason: The longest common subsequence of “ABCBDAB* and "BDCAB™ is

"BcAB” , which has a length of 4.

So | find myself in the exact same boat with my design, which is actually called
‘longest prefix subsequence’

lets try strategy A MY QUESTION TO CHATGPT

But befare you go ahead, lets try to understand first again:

String p="ba" is longer than String s="a"
If this is not permissible, then changing code will serve no purpose For cases like this, we can see
how this will be challenging in

my code.. It would have

ko ok o o o o ook ook o o o ok ok ok ok ook ook ook o o ook o ok ok ok ok Kok ok o o ok ok Kok ok ok ok ok ok ok reached end of the do while
loop having processed single
THIS IS PERMUTATION (STRING Y): ba THIS IS STRING X: character in String X.
Subsequence analysis row: We would all of a sudden have
Checking character: b against String X index: 1(a) to control what is written inside

char NOT found: b at String X index: (1) ¢ -
enar ourc at String X index: (1) a subsequences array. It is

extremely challenging and

Adding: a index(1l) as unmatched

Adding: a as running window - -
e e e chatGPT has identified that my

code

CPTis corre i
Here's what needs to change (conceptually) to make p="ba" and s="a" produce subsequence "a" instead igggdm;ﬁ;ﬂ?';;d since!
hasFirstMatch to ensure
of blank. that characters are only
removed from String Y
ONLY if it has found first
match. And to make issues
even more frickier, lam
. . . . confronted with a single
"l can only start matching after the first character of Y (index 0) is matched.” character in String s .

Right now your subsequence logic behaves like:

That is exactly “longest prefix-subsequence” (match must start at Y[0]).

You want instead:

“| can delete characters anywhere in Y, including at the beginning, so the subsequence can start at any Y
index.”

That means your matcher must be able to skip leading characters of Y.

It is permissible for your goal.

You're not asking: “Is p a subsequence of s with no changes?”

You're asking: “What is the longest subsequence of p that appearsin s (by deleting from p)?"
Under that definition:

e p can be longer than s

* because you're allowed to delete characters from p until what remains fits inside s

So ChatGPT has given me an insight into longest subsequence of p.

But it becomes more confusing, since | know that with:
prefix longest subsequence (my design)

String p =”ba” and String s =“a”

I would explore ba and ab

So, lwould find the length subsequence =1 using String p=ab Strings=a
I would find length subsequence= 0 using String p =ba

With
longest subsequence (suggested by ChatGPT)
I would explore ba and ab

So, lwould find the length subsequence =1 using String p=ab

I would find length subsequence= 0 using String p =ba

BUT using resilience, it would also identify length subsequence =1 using String
pa = ba (starting at index 1)

Strategy A — simplest with minimal disturbance: “try all starting positions in Y”

For each permutation Y:

« run your existing subsequence matcher multiple times:
« attempt starting at Y index 0
e attempt starting at Y index 1
« attempt starting at Y index 2

. .

+ choose the best matched result

This guarantees "ba™ in "a" works, because the attempt starting at Y index 1is "a" .

Pros: very small conceptual change

Cons: repeats work (but p is small, so OK)

So this raised a very interesting question, why would we want this to appear given that
prefix approach canidentify String p=ab String s=a (length subsequence =1)
We have to remember that | use permutations of String p to facilitate all this...

Here is question to ChatGPT and response:

