MY APPROACH

For this challenge, could use challenge which focussed on smallest window of String
within another String.

Example

For this input

source = “ADOBECODEBANC™

target = “ABC"

the result should be:

BANC

Reason: The smallest substring in "ADDBECODERANC" that contains all
characters of “ABC" is "BANC" .

1) All characters in StringY = BDCAB ~ FOUND IN STRING X

Y =BDCAB and check if it appearsin X=ABCBDAB

If there is a single/multiple exact match (i.e. no unmatched characters) of entire String
X, we would simply take the

length of Y...

And take indexes of String X (start => end)

2) In any other scenarios, the inclusion code will fail... Since we

have to accommodate for exclusions,,,

In the challenge completed:

Write a function to find the smallest window in a given string that
contains all characters of another given string.
We would have discarded target string (equivalent to String X) if it
contained an unmatched character. In this challenge we have the
opportunity to acknowledge these. It is totally irrelevant on the
occurrences or at which position. But if there are zero character

matches in String X and String Y, String X does not qualify for
subsequence.

At the point where it does not find a match, we would include a
counter for unMatched...

Once it has processed entire String Y, it would simply perform:
Length Y —unmatched character occurrences..

We would need to maintain the first index and last index match on
String X

The longest common subsequence would be in which unmatched
IS minimum.

| can also maintain the permutation aspect of re-arranging
String Y.

