What your program does (high level)
You have two layers:
1. Permutation layer (build all orderings of p)
e  You compute how many permutations should exist (permutations as a Biginteger).
e  Youthenrandomly generate permutations until your Set<String> st reaches that count.
®  Result: valuesSet[] = all permutations (unique strings).
2. Scan layer (for each permutation, scan s)
e  Foreach permutation valuesSet[entry], you scan s starting from each startPos (counter).
e  You match characters in the exact order of the permutation.
®  You allow “skips”in s (you move i forward and keep searching).
e  Your subsequence mode is PREFIX:
o you only start “counting” once you hit the first matched character (your hasFirstMatch gate),

o andyou only match from the beginning of the permutation (you don’t delete from the front of Y
unless using Strategy A).

When a scan attempt finishes (either perfect match or partial), you store:
e indices of the window in s (firstindexLocationStringS, lastindexLocationStringS),
e the permutation,

e and the subsequence details (what matched, what didn’t, lengths, etc).

Your “mental model” (how you seem to think while coding this)

Your code reflects a consistent mindset:

e  Accountability first: you want to prove you explored all permutations (set size equals the theoretical
permutation count), not “probably enough”.

e  State machine thinking: you treat matching like a “consume from template” process:
o sbisthe “remaining work to do”.
o When a char matches, you delete it from sb.
o When sbis empty - the permutation is fully satisfied.

e Window + evidence logging: you don’t just want “true/false”.

o You want the substring window, the subsequence extracted, and indexes in both strings.

e  Performance guardrails: you added cycle counters and set-size checkpoints, and you avoid printing too
frequently.

That’s why your design works well as a “debuggable engine” rather than a minimal solution.

Key variables and what they mean (Main class)
Global (static) fields

e  permutations (Biginteger)
Target number of unique permutations you expect for p (factorials + repetition adjustment in your
Permutation helper).



* row
Output record pointer. Every time you finish storing a scan result, you do row++.

e col
Always used as the base column index (effectively 0). You use col, col+1, col+2 to keep the code readable.

e firstindexLocationStringS, lastindexLocationStringS
The window bounds in s for the current attempt.

o firstindex... = where the first matched character occurred

o lastindex... = where the last matched character occurred

e  store[1000][5]
A table of “core results” per row. In this final version you mainly store:

o store[row][0] =firstindexins
o  store[row][1] = lastindexins

o  store[row][2] = permutation string (the template that was attempted)
(cols 3-4 exist but aren’t heavily used in this file)

e subsequences[1000][6] (StringJoiner[][])
Per-row subsequence details. Your 6 columns behave like:

1. Matched chars in X with X-index
Example: a index(2) b index(3)

2. Unmatched chars in X with X-index (only after first match, because of hasFirstMatch gate)
Example: c index(1) as unmatched

3. Presented window string (X-window)
You build up the window content you “saw” (characters you processed once matching started). This is what you print
as “Presented window”.

4, Length of the subsequence
Stored as a number string (you later parse/use it to compute maximum length).

5. Subsequence characters only (no indices)
Example: ab

6. Matched characters with Y-indices
Example: aindex: (0) b index: (1)

¢ maximumSubsequencelength
You compute the maximum value of subsequences[c][3] across rows, then print ties.

e windowSize
Used for printing (size: ...) and window summaries.

Key local variables inside findPermutations(s,p)
Permutation building stage

e stRandomNums
Ensures you don’t reuse the same random index twice while building a single permutation.

. st
The set of unique permutation strings built so far.

° Sj
Builds one permutation candidate (characters of p in random order) before inserting into st.

e cycles, totalcycles
How many attempts you made to populate the permutation set.



e valuesSet[]
Final array of permutations from the set.

Scan/match stage

e  sb (StringBuilder)
The “remaining letters of current permutation that still need to be matched”.

o  When you match the next needed character, you delete it from sb.
o Empty sb means perfect match.

e counter
Drives different startPos positions (try matching starting from s[0], then s[1], ...).

e startPos
Current starting index in s for the scan attempt.

The running index scanning through s.

e hasCharFound
Flag used to indicate you matched at least something during this attempt (used in your result classification).

e hasFirstMatch (important for your PREFIX subsequence semantics)
This is your “gate”.

o Before the first match, you don’t treat any characters as part of the window/unmatched set.
o  After the first match, you start recording the window and unmatched characters.

e lengthSubsequence
How many characters you successfully matched (in order) for that attempt.

What your PREFIX subsequence rule really means
Your design is effectively:

“For each permutation Y, | will only start recording the subsequence/window after the first matched character of Y
is found in X. | do not try to rescue the permutation by skipping its leading characters (unless using Strategy A).”

So for p="ba", s="a":
e  permutation "ba" < no first match (b) > subsequence length 0

e  permutation "ab" = first match found (a) > subsequence length 1

That’s why permutations can “rescue” you even in prefix mode.



