
What your program does (high level) 

You have two layers: 

1. Permutation layer (build all orderings of p) 

• You compute how many permutations should exist (permutations as a BigInteger). 

• You then randomly generate permutations until your Set<String> st reaches that count. 

• Result: valuesSet[] = all permutations (unique strings). 

2. Scan layer (for each permutation, scan s) 

• For each permutation valuesSet[entry], you scan s starting from each startPos (counter). 

• You match characters in the exact order of the permutation. 

• You allow “skips” in s (you move i forward and keep searching). 

• Your subsequence mode is PREFIX: 

o you only start “counting” once you hit the first matched character (your hasFirstMatch gate), 

o and you only match from the beginning of the permutation (you don’t delete from the front of Y 
unless using Strategy A). 

When a scan attempt finishes (either perfect match or partial), you store: 

• indices of the window in s (firstIndexLocationStringS, lastIndexLocationStringS), 

• the permutation, 

• and the subsequence details (what matched, what didn’t, lengths, etc). 

 

Your “mental model” (how you seem to think while coding this) 

Your code reflects a consistent mindset: 

• Accountability first: you want to prove you explored all permutations (set size equals the theoretical 
permutation count), not “probably enough”. 

• State machine thinking: you treat matching like a “consume from template” process: 

o sb is the “remaining work to do”. 

o When a char matches, you delete it from sb. 

o When sb is empty → the permutation is fully satisfied. 

• Window + evidence logging: you don’t just want “true/false”. 

o You want the substring window, the subsequence extracted, and indexes in both strings. 

• Performance guardrails: you added cycle counters and set-size checkpoints, and you avoid printing too 
frequently. 

That’s why your design works well as a “debuggable engine” rather than a minimal solution. 

 

Key variables and what they mean (Main class) 

Global (static) fields 

• permutations (BigInteger) 
Target number of unique permutations you expect for p (factorials + repetition adjustment in your 
Permutation helper). 



• row 
Output record pointer. Every time you finish storing a scan result, you do row++. 

• col 
Always used as the base column index (effectively 0). You use col, col+1, col+2 to keep the code readable. 

• firstIndexLocationStringS, lastIndexLocationStringS 
The window bounds in s for the current attempt. 

o firstIndex... = where the first matched character occurred 

o lastIndex... = where the last matched character occurred 

• store[1000][5] 
A table of “core results” per row. In this final version you mainly store: 

o store[row][0] = first index in s 

o store[row][1] = last index in s 

o store[row][2] = permutation string (the template that was attempted) 
(cols 3–4 exist but aren’t heavily used in this file) 

• subsequences[1000][6] (StringJoiner[][]) 
Per-row subsequence details. Your 6 columns behave like: 

1. Matched chars in X with X-index 
Example: a index(2) b index(3) 

2. Unmatched chars in X with X-index (only after first match, because of hasFirstMatch gate) 
Example: c index(1) as unmatched 

3. Presented window string (X-window) 
You build up the window content you “saw” (characters you processed once matching started). This is what you print 
as “Presented window”. 

4. Length of the subsequence 
Stored as a number string (you later parse/use it to compute maximum length). 

5. Subsequence characters only (no indices) 
Example: ab 

6. Matched characters with Y-indices 
Example: a index: (0) b index: (1) 

• maximumSubsequenceLength 
You compute the maximum value of subsequences[c][3] across rows, then print ties. 

• windowSize 
Used for printing (size: …) and window summaries. 

 

Key local variables inside findPermutations(s,p) 

Permutation building stage 

• stRandomNums 
Ensures you don’t reuse the same random index twice while building a single permutation. 

• st 
The set of unique permutation strings built so far. 

• sj 
Builds one permutation candidate (characters of p in random order) before inserting into st. 

• cycles, totalcycles 
How many attempts you made to populate the permutation set. 



• valuesSet[] 
Final array of permutations from the set. 

Scan/match stage 

• sb (StringBuilder) 
The “remaining letters of current permutation that still need to be matched”. 

o When you match the next needed character, you delete it from sb. 

o Empty sb means perfect match. 

• counter 
Drives different startPos positions (try matching starting from s[0], then s[1], …). 

• startPos 
Current starting index in s for the scan attempt. 

• i 
The running index scanning through s. 

• hasCharFound 
Flag used to indicate you matched at least something during this attempt (used in your result classification). 

• hasFirstMatch (important for your PREFIX subsequence semantics) 
This is your “gate”. 

o Before the first match, you don’t treat any characters as part of the window/unmatched set. 

o After the first match, you start recording the window and unmatched characters. 

• lengthSubsequence 
How many characters you successfully matched (in order) for that attempt. 

 

What your PREFIX subsequence rule really means 

Your design is effectively: 

“For each permutation Y, I will only start recording the subsequence/window after the first matched character of Y 
is found in X. I do not try to rescue the permutation by skipping its leading characters (unless using Strategy A).” 

So for p="ba", s="a": 

• permutation "ba" → no first match (b) → subsequence length 0 

• permutation "ab" → first match found (a) → subsequence length 1 

That’s why permutations can “rescue” you even in prefix mode. 


