This is my formal testing..
| am going to start at most trivial level....

TEST CASE 1: Decimalinput20 PASS

num is greater than: 10

num is greater than: 1@

XK

** Process exited - Return Code: & **

TEST CASE 2: Decimalinput5 PASS

num is greater than: 5
v

TEST CASE 3: Decimal 27 PASS

It now appears much easier to troubleshoot with references to Line 47 and Line 6 and
Line 181

num is greater than:
num is greater than:

num is greater than:

num is greater than:

num is greater than:

Exception in thread
tion: String in
at java.base/java.lang.5tringlatinl.charAt(Stringlatinl.java:47)
at java.base/java.lang.5tring.charAt({String. java:693)

at Solution.decimalToRoman(Solution.java:181)

at Solution.main(Solution.java:e)

I will mass remediate issues since it is an exercise | wish to conclude at earliest
opportunity.

But | can see that it entered in here on basis currentNumeral==5.
It was only intended if there were consecutive repeat numerals.

if (currentNumeral==5

counter++;

if (conversion.charAt(lengthConversion-counter) == conversion.charAt(lengthConversion-1}))

It has been identified to be issue in my else statement in the if-else.
| have created a separate equivalent to default in Switch statement and will execute

again.

else if (num>
r
L

currenthumeral++;
ersion = conversion + "I";
= num - 1;

em.out.println{“num is gre

| further experienced...

num is greater than:
greater than:
greater than:
greater than:
greater than:

counter: 2
comparing: I with: I
counter:
counter:
counter:
counter: &
: String inde

at java.base/java.lang.Stringlatinl.charAt(Stringlatinl.java:47)

at java.base/java.lang.String.charAt(String.java:693)

at Solution.decimalToRoman(Solution.java:188)

at Solution.main(Solution.java:e)

| knew straight away that counter is potentially too high, so introduced few more
changes as below:

iF|ﬂcunrentNumeral==ﬂﬂ

I
L

" + counter);

TEST CASE 3a: 27 retested

greater than:
greater than:
greater than:
greater than:

num is greater than:
5

counter: 2
comparing: I with: I
counter: 3

counter: 4

counter: 5

counter: &

EXIT loop

XOVIT

Before | start exploring any cases in which it will trigger four consecutive numerals such
as:
94 (LXXXXI), this will be a complex test since it will perform adjustment two fold..

42 (XXXXII) —this seems a more sensible approach....

| will try few more basic scenarios with higher decimals...

TEST CASE 4: 27 retested PASS

greater than: 18
greater than:
greater than:
greater than:
greater than:
counter: 2
comparing: I with: I

counter:

counter:

3
counter: 4
5
6

counter:
EXIT loop
KVIT

TEST CASE5: 132 PASS

OOXIT

TESTCASE6: 133 PASS

OOXTTT

TESTCASE 7: 1322 PASS
MCCCXXII

So far | have every reason to believe that the code is comfortable, | will now explore 40,

41,42, 43
Only | feel comfortable, | will explore up to 50

| have reason to believe that once all these numbers function, it will become a multi-

functional solution

TESTCASE S8 : 40 FAIL

TESTCASE9: 41 FAIL
YOOCXT

| could see it was not entering in the area where it should have remediated the XXXX

So | performed several small changes to my code.

if (currentNumeral==4)

{
do

counter++;

System.out.println("counter: " + counter);

if (counter==currentNumeral)

{

break;

if (conversion.charAt(lengthConversion-counter) ==
conversion.charAt(lengthConversion-1))

{

System.out.println("comparing: " + conversion.charAt(lengthConversion-
counter) + " with: " + conversion.charAt(lengthConversion-1));

fourlnRowNumeral = conversion.charAt(conversion.length()-1);

if (currentNumeral>4)

{

incorrectPredecessor = conversion.charAt(conversion.length()-5);

}

match++;

} //end of big if

Jwhile(counter<currentNumeral);

TESTCASE9a: 41 FAIL

Itis now interacting with expected area of code, | will keep focus on this.

num is greater than: 18
1

num is greater than: 10
2

num is greater than: 10
3

num is greater than: 18
4

counter: 2

comparing: X with: X
counter: 3

comparing: X with: X
counter: 4

EXIT loop

num is greater than: 1
5
JOOXT

TEST CASE 9b: 41 PASS

| have now added an aggressive amount of coding.

| will save this as version Test version 9b.

Itis beginning to look much more like the finished article.

And | can safely say that being familiar with IDE has assisted, since my progression is
much quicker.

num is greater than: 10

1

Fakkxsxkxxx*REMAINING num: 31
num is greater than: 10

2

FaxkkxsxkxxxREMAINING num: 21
num is greater than: 10

3

Faxkkxsxkxkx xREMAINING num: 11
num is greater than: 10

4

s oo xREMAINING num:

N

counter: 1

comparing: X with: X

counter: 2

comparing: X with: X

counter: 3

comparing: X with: X

counter: 4

EXIT loop

THREE MATCHES FOUND
000000000000000000000000000
REMEDIATING XXXX and I
---------------------- CONVERSION: XXXX
CORRECT NUMERAL: XXXX
MATCH

Correction: XXXX=>XL

num is greater than: 1

5

Frxkkkxxx*AAXREMAINING num: 0
counter: 5

EXIT loop

THREE MATCHES FOUND
000000000000000000000000000
REMEDIATING XXXX and Il

______________________ CONVERSION: XLI

CORRECT NUMERAL: XXXX

XLI

** Process exited - Return Code: 0 **

I will quickly try my earlier test cases to ensure no interruption...

TESTCASE1: 20 => PASS
TESTCASE2: 5 => PASS
TESTCASE 3: 27 => PASS
TEST CASE5: 132 => PASS
TESTCASEG6: 133 => PASS
TESTCASE7: 1322 =>PASS
TESTCASES8 : 40 => PASS
TEST CASE 9b: 41 => PASS

My logic suggests if | can progress from 42 => 50

| expect it to be complete.. The numbers which are unsettling are 44 (XXXXIIll) and 49
(XXXXVIII.

TESTCASE10 : 42 FAIL

eption in thread “main" j ang.5tringIndexOut0OfB ption: String index out of range: -1
at java.base/java.lang.S5tring
at Solution.decimalToRoman(Solution.java:252)

at Solution.main(Solution.java:é)

rkEssEEREEEEIQEMATNING num: 2
counter: 1
comparing: X with: X
counter: 2
comparing: X with: X
counter: 3
comparing: X with: X
counter: 4
EXIT loop
THREE MATCHES FOUND
200000000000200000000000000
REMEDIATING XXXX and IIII
CONVERSION: 00X
CORRECT NUMERAL :
MATCH
Correction: X0X=>XL
num is greater than: 1
5
HEEEEELLLLTTEREMATINING num: 1
counter: 5 foundMatch = true;
EXIT loop
THREE MATCHES FOUND
280000680000200800008000000
REMEDIATING XXXX and IIII
‘CONVERSION:
CORRECT MUMERAL: XXXX
num is greater than: 1
6
FrreeEerrsTREMATNING num: @
counter: &
EXIT loop

at java.base/java.lang.String. ring(5tring.java:1837)

at Solution.decimalToRoman(Solution.java:252)

TEST CASE 10a: 42 PASS

Itis looking much tidier

ttt**ttttt*ttREmINI'.lG nul
counter: 1

comparing: X with: X
counter: 2

comparing: X with: X

counter: 3

comparing: X with: X

counter: 4

EXIT loop

THREE MATCHES FOUND

200008 880000 00000000000

REMEDIATING X00(and IITT
CONVERSION: 200X

CORRECT NUMERAL:

MATCH

Correction: XXOO(=>XL

nmum is greater than: 1

1

tt‘**tt‘tt*ttREmINI'.lG num: 1

nmum is greater than: 1

2

tt‘**tt‘tt*ttREmINI'.lG num: @

XLII

TESTCASE 11: 43 PASS

CONVERSION: XO0KX
CORRECT NUMERAL:
MATCH
Correction: XXOO(=>XL
num is greater than: 1
1
ttt**ttttt*ttREMNI'.‘G num
num is greater than: 1
2
ttt**ttttt*ttREMNI'.‘G num:
num is greater than: 1
3
ttt**ttttt*ttREMNI'.‘G num:
XLIIT

** Process exited - Return

TEST CASE 12: 44 = FAIL
This is one of the scenarios which will test robustness of the code

¥¥¥$*¥¥¥¥¥$*¥REMINI'.‘G num: @
counter: 1

comparing: I with: I

counter:

comparing: I with: I

counter:

comparing: I with: I

counter: 4
EXIT loop
XLITII

comparing: I with:
counter: 2
comparing: I with:
counter: 3
comparing: I with:
counter: 4

HERE AT END

EXIT loop

NUMBER MATCHES:
XLITII

tuhile(counter<currentNumeral);

out.println("EX

out.println(HES: " + matchas

if (match==3)

out.println("THREE MATCHES FOUND");

counter=6;

er numeral current

TEST CASE 12a: 44 FAIL

NUMBER MATCHES: 3
THREE MATCHES FOUND
200000060200000000000000000
REMEDIATING 20X and IIIT

CONVERSION: XLIIII
CORRECT NUMERAL: XXX
XLIIII

Butitis making lot more sense now, clearly itis comparing XLIIII
But it did not enter the loop to identify a successful match because the following
variable was not reset:

and input co ctNumeral

+ temp +"=:"+conversion);

foundMatch

if(foundMatch)

I
L
counter=08

current

This was the nextissue, since as can be seen above, the conversion string will be
overwritten. This was not anissue when XXXX =>|L

But it was unaware of further remaining decimal.

I implemented the following:

em.out.println("

numberFoundMatches++;

I
L

conversion

version =

TEST CASE 12b: 44 PASS

num is greater than: 10

1

Frkkkxkkkkk*REMAINING num: 34
num is greater than: 10

2

Frkkkxkkkkk*REMAINING num: 24
num is greater than: 10

3

xxdkxxxkkkx**REMAINING num: 14
num is greater than: 10

4

Frkkkxxkk kX REMAINING num: 4
counter: 1

comparing: X with: X

counter: 2

comparing: X with: X

counter: 3

comparing: X with: X

counter: 4

HERE AT END

EXIT loop

NUMBER MATCHES: 3

THREE MATCHES FOUND

000000000000000000000000000

lumeral

REMEDIATING XXXX and llll and CCCC
______________________ ENTRY IN CONVERTED STRING: XXXX
INCORRECT NUMERAL: XXXX

MATCH FOUND IN EXISTING CONVERSION STRING
Correction: XXXX=>XL

num is greater than: 1

1

FxxxxxkxkxRAAREMAINING num: 3

num is greater than: 1

2

Frkdkxx kR REMAINING num: 2

num is greater than: 1

3

Frdkdkkxkkkkx*REMAINING num: 1

num is greater than: 1

4

FxxxkxkxkkRAFREMAINING num: 0

counter: 1

comparing: | with: |

counter: 2

comparing: | with: |

counter: 3

comparing: | with: |

counter: 4

HERE AT END

EXIT loop

NUMBER MATCHES: 3

THREE MATCHES FOUND
000000000000000000000000000

REMEDIATING XXXX and Illl and CCCC
---------------------- ENTRY IN CONVERTED STRING: XLIII
INCORRECT NUMERAL: XXXX

...................... ENTRY IN CONVERTED STRING: XLIII
INCORRECT NUMERAL: Il

MATCH FOUND IN EXISTING CONVERSION STRING

Correction: XLIIII=>XLIV

XLIV

** Process exited - Return Code: 0 **

Now | need to continue testing from 45 => 50

TEST CASE 13: 45 =>48 (PASS)

TEST CASE 14: 49 =FAIL

FHEFFXFEFETTFREMAINING num: @

counter: 5

HERE AT EMND

EXIT loop

NUMBER MATCHES: 2
XLVIIII

Correction: XXOO(=>XL

remaining num is greater than equal to:
1

ttt**ttttt*‘tRE”AINI"G num: &

remaining num is greater than equal to:
2

FEETTTLLALETIREMATNING num: 3

remaining num is greater than equal to:

3

ttt**ttttt*ttREmINIr.lG num: 2

remaining num is greater than

a

##**#**REWNIF‘G num: 1

tttSSttttt%ttttcurentnumeral: 4
Initial counter: @

counter: 1

comparing: I with: I

counter: 2

comparing: I with: I

counter: 3

counter: 4

HERE AT END

EXIT loop

NUMBER MATCHES: 2

remaining num is greater than or equal to:

5

ttt**ttttt*ttREmINIr.lG num: @

tttSSttttt%ttttcurentnumeral: 5
Initial counter: 4

counter: 5

HERE AT END

EXIT loop

MIMRFR MATIHFS- 7

T
o
]

T I

up to this point

t also shows the current
converted numeral is 5
digits. And based on the
nformation above, it
would be XLVII

ALSO REMEMBER DURING MY
EARLIER CODING IRESET THE
CURRENTNUMERAL TO 0. THIS
MIGHT BE HAVING AN IMPACT
NADVERTENTLY

f({foundMatch)

{

| am also finding that is has not passed decimal 9

| think this is a better starting point...
It suggests to me itis related to having a V in front... And this is affecting the counter
along the way. | think it will be investigate with this first..

TEST CASE 15: 9 FAIL

remaining num is greater than or equal to: 5
1

FrFkAkAxx*xXXREMAINING num: 4
remaining num is greater than or equal to: 1
2

rxFkdk AR xxx X REMAINING num: 3
remaining num is greater than or equal to: 1
3

FxFkdk AR x XXX REMAINING num: 2
remaining num is greater than or equal to: 1
4

FxFkkkAxxx* XX REMAINING num: 1
FrxxkxKK****RXX*CUrentnumeral: 4
--------------- Initial counter: 0

counter: 1

CONVERSION: VIII //The problem arises here straight away.

//There is something in my logic forcing below action as soon
as currentNumeral in conversion is 4

comparing: | with: |
counter: 2

CONVERSION: VI

comparing: | with: |

counter: 3

CONVERSION: VIII
counter: 4

HERE AT END

EXIT loop

NUMBER MATCHES: 2

remaining num is greater than or equal to: 1

5

rrFxAKFxx*xXFXREMAINING num: O

FhFAK AKX *IFRERCUurentnumeral: 5
--------------- Initial counter: 4
counter: 5

HERE AT END

EXIT loop

NUMBER MATCHES: 2

Vil

** Process exited - Return Code: 0 **

Now it is a case of trying more sequences with CCCCXXXXIIII
This seems like a perfect test

TEST CASE 16: 4044 =FAIL

| did feel it was too adventurous. My next logical tests beyond
&
FEREFFRREXEFEQEMATINING num: 24
counter: &
HERE AT END
EXIT loop
NUMBER MATCHES: 3
THREE MATCHES FOUND
20000266000 0000000000000000

Exception in thread "main”

java.lang.NullPointerException
at Solution.decimalToRoman(Solution.java:265)

at Solution.main(Solution.java:6)

This appears again the more | fix, it will have implications elsewhere.

The easiest solution now is to let it convert it naturally.
And then replace all CCCC with ID

XXXX => XL

i =>1v

This will solve all the headache completely and simplify the problem.

