
This is my formal testing..
I am going to start at most trivial level….

TEST CASE 1: Decimal input 20 PASS

TEST CASE 2: Decimal input 5 PASS

TEST CASE 3: Decimal 27 PASS

It now appears much easier to troubleshoot with references to Line 47 and Line 6 and
Line 181

I will mass remediate issues since it is an exercise I wish to conclude at earliest
opportunity.

But I can see that it entered in here on basis currentNumeral==5.
It was only intended if there were consecutive repeat numerals.

It has been identified to be issue in my else statement in the if-else.
I have created a separate equivalent to default in Switch statement and will execute
again.

I further experienced…

I knew straight away that counter is potentially too high, so introduced few more
changes as below:

TEST CASE 3a: 27 retested

Before I start exploring any cases in which it will trigger four consecutive numerals such
as:
 94 (LXXXXIIII), this will be a complex test since it will perform adjustment two fold..
 42 (XXXXII) – this seems a more sensible approach….

I will try few more basic scenarios with higher decimals…

TEST CASE 4: 27 retested PASS

TEST CASE 5: 132 PASS

TEST CASE 6: 133 PASS

TEST CASE 7: 1322 PASS

So far I have every reason to believe that the code is comfortable, I will now explore 40,
41, 42, 43
Only I feel comfortable, I will explore up to 50
I have reason to believe that once all these numbers function, it will become a multi-
functional solution

TEST CASE 8 : 40 FAIL

TEST CASE 9: 41 FAIL

I could see it was not entering in the area where it should have remediated the XXXX
So I performed several small changes to my code.

if (currentNumeral==4)

 {

 do

 {

 counter++;

 System.out.println("counter: " + counter);

 if (counter==currentNumeral)

 {

 break;

 }

 if (conversion.charAt(lengthConversion-counter) ==
conversion.charAt(lengthConversion-1))

 {

 System.out.println("comparing: " + conversion.charAt(lengthConversion-
counter) + " with: " + conversion.charAt(lengthConversion-1));

 fourInRowNumeral = conversion.charAt(conversion.length()-1);

 if (currentNumeral>4)

 {

 incorrectPredecessor = conversion.charAt(conversion.length()-5);

 }

 match++;

 } //end of big if

 }while(counter<currentNumeral);

TEST CASE 9a: 41 FAIL

It is now interacting with expected area of code, I will keep focus on this.

TEST CASE 9b: 41 PASS

I have now added an aggressive amount of coding.
I will save this as version Test version 9b.
It is beginning to look much more like the finished article.
And I can safely say that being familiar with IDE has assisted, since my progression is
much quicker.

num is greater than: 10

1

*************REMAINING num: 31

num is greater than: 10

2

*************REMAINING num: 21

num is greater than: 10

3

*************REMAINING num: 11

num is greater than: 10

4

*************REMAINING num: 1

counter: 1

comparing: X with: X

counter: 2

comparing: X with: X

counter: 3

comparing: X with: X

counter: 4

EXIT loop

THREE MATCHES FOUND

000000000000000000000000000

REMEDIATING XXXX and IIII

----------------------CONVERSION: XXXX

CORRECT NUMERAL: XXXX

MATCH

Correction: XXXX=>XL

num is greater than: 1

5

*************REMAINING num: 0

counter: 5

EXIT loop

THREE MATCHES FOUND

000000000000000000000000000

REMEDIATING XXXX and IIII

----------------------CONVERSION: XLI

CORRECT NUMERAL: XXXX

XLI

** Process exited - Return Code: 0 **

I will quickly try my earlier test cases to ensure no interruption…

TEST CASE 1: 20 => PASS
TEST CASE 2: 5 => PASS
TEST CASE 3: 27 => PASS
TEST CASE 5: 132 => PASS
TEST CASE 6: 133 => PASS
TEST CASE 7: 1322 => PASS
TEST CASE 8 : 40 => PASS
TEST CASE 9b: 41 => PASS

My logic suggests if I can progress from 42 => 50

I expect it to be complete.. The numbers which are unsettling are 44 (XXXXIIII) and 49
(XXXXVIIII).

TEST CASE 10 : 42 FAIL

TEST CASE 10a: 42 PASS

It is looking much tidier

TEST CASE 11: 43 PASS

TEST CASE 12: 44 = FAIL
This is one of the scenarios which will test robustness of the code

TEST CASE 12a: 44 FAIL

But it is making lot more sense now, clearly it is comparing XLIIII
But it did not enter the loop to identify a successful match because the following
variable was not reset:

This was the next issue, since as can be seen above, the conversion string will be
overwritten. This was not an issue when XXXX => IL
But it was unaware of further remaining decimal.
I implemented the following:

TEST CASE 12b: 44 PASS

num is greater than: 10

1

*************REMAINING num: 34

num is greater than: 10

2

*************REMAINING num: 24

num is greater than: 10

3

*************REMAINING num: 14

num is greater than: 10

4

*************REMAINING num: 4

counter: 1

comparing: X with: X

counter: 2

comparing: X with: X

counter: 3

comparing: X with: X

counter: 4

HERE AT END

EXIT loop

NUMBER MATCHES: 3

THREE MATCHES FOUND

000000000000000000000000000

REMEDIATING XXXX and IIII and CCCC

----------------------ENTRY IN CONVERTED STRING: XXXX

INCORRECT NUMERAL: XXXX

MATCH FOUND IN EXISTING CONVERSION STRING

Correction: XXXX=>XL

num is greater than: 1

1

*************REMAINING num: 3

num is greater than: 1

2

*************REMAINING num: 2

num is greater than: 1

3

*************REMAINING num: 1

num is greater than: 1

4

*************REMAINING num: 0

counter: 1

comparing: I with: I

counter: 2

comparing: I with: I

counter: 3

comparing: I with: I

counter: 4

HERE AT END

EXIT loop

NUMBER MATCHES: 3

THREE MATCHES FOUND

000000000000000000000000000

REMEDIATING XXXX and IIII and CCCC

----------------------ENTRY IN CONVERTED STRING: XLIIII

INCORRECT NUMERAL: XXXX

----------------------ENTRY IN CONVERTED STRING: XLIIII

INCORRECT NUMERAL: IIII

MATCH FOUND IN EXISTING CONVERSION STRING

Correction: XLIIII=>XLIV

XLIV

** Process exited - Return Code: 0 **

Now I need to continue testing from 45 => 50

TEST CASE 13: 45 => 48 (PASS)

TEST CASE 14: 49 = FAIL

I am also finding that is has not passed decimal 9
I think this is a better starting point…
It suggests to me it is related to having a V in front… And this is affecting the counter
along the way. I think it will be investigate with this first..

TEST CASE 15: 9 FAIL

remaining num is greater than or equal to: 5

1

*************REMAINING num: 4

remaining num is greater than or equal to: 1

2

*************REMAINING num: 3

remaining num is greater than or equal to: 1

3

*************REMAINING num: 2

remaining num is greater than or equal to: 1

4

*************REMAINING num: 1

***************Curentnumeral: 4

---------------Initial counter: 0

counter: 1

------------------------------------CONVERSION: VIII //The problem arises here straight away.

//There is something in my logic forcing below action as soon
as currentNumeral in conversion is 4

comparing: I with: I

counter: 2

------------------------------------CONVERSION: VIII

comparing: I with: I

counter: 3

------------------------------------CONVERSION: VIII

counter: 4

HERE AT END

EXIT loop

NUMBER MATCHES: 2

remaining num is greater than or equal to: 1

5

*************REMAINING num: 0

***************Curentnumeral: 5

---------------Initial counter: 4

counter: 5

HERE AT END

EXIT loop

NUMBER MATCHES: 2

VIIII

** Process exited - Return Code: 0 **

Now it is a case of trying more sequences with CCCCXXXXIIII
This seems like a perfect test

TEST CASE 16: 4044 = FAIL

I did feel it was too adventurous. My next logical tests beyond

This appears again the more I fix, it will have implications elsewhere.

The easiest solution now is to let it convert it naturally.

And then replace all CCCC with ID
XXXX => XL
IIII => IV

This will solve all the headache completely and simplify the problem.

