
I have now started again and placed in all my implementations as follows.
To bring this to a close as quick as possible, I am just going to execute all conversions
from 1=>4000 initially. Note 4000 is limit due to change in convention henceforth..

TEST CASE 1: Running program through full execution 0-4000 FAIL

It has crashed at
Decimal: 0 =>

num is greater than: 1

Decimal: 1 => I

num is greater than: 1

num is greater than: 1

Decimal: 2 => II

num is greater than: 1

num is greater than: 1

num is greater than: 1

Decimal: 3 => III

num is greater than: 1

num is greater than: 1

num is greater than: 1

num is greater than: 1

Decimal: 4 => IV

num is greater than: 5

Decimal: 5 => V

num is greater than: 5

num is greater than: 1

Decimal: 6 => VI

num is greater than: 5

num is greater than: 1

num is greater than: 1

Decimal: 7 => VII

num is greater than: 5

num is greater than: 1

num is greater than: 1

num is greater than: 1

Decimal: 8 => VIII

num is greater than: 5

num is greater than: 1

num is greater than: 1

num is greater than: 1

num is greater than: 1

Exception in thread "main" java.lang.StringIndexOutOfBoundsException: String index out of range: -1

 at java.base/java.lang.String.substring(String.java:1841)

 at Solution.decimalToRoman(Solution.java:234)

 at Solution.main(Solution.java:8)

** Process exited - Return Code: 1 **

I quickly believe following is remediation since there is no other characters in String
beyond IX

TEST CASE 1a: Testing decimal 9 => PASS

I believe I need to apply the same logic across all the statements…

TEST CASE 2: FAIL (issue at decimal 19)
I have set up every loop identically

I progressed through two sets of codes..
The first one is as below:

However it rendered issue now on 9 (IX):

I used more understanding of the situation and adjusted the code to:

It now passes 9 (IV) and 19 (XIX)

I think I am now in a position that I need to apply the same statement logic into XIIII.

If it functions for this, I am all but certain I have tackled this challenge since I dealt with
having any characters at the front in the conversion before the match (XIIII).
And since I have tackled the highest occurrence first (which is yet to appear in my
testing), it should propagate the incorrect roman numeral correctly.

TEST CASE 3: Modified code to resolve decimal 24 = PASS

I can also see now that I now have to resolve LIIII
The good news is that I resolve issue for VIIII, XIIII and now LIIII
So it is moving sequentially through my code in the order I identified the statements.

TEST CASE 4: Modified code to resolve decimal 44 = FAIL

I will first quickly check to ensure no coding errors

It processes number all the way up to 403
It appears the first error is here…

It is also appearing that I can potentially decrease the amount of code by passing
parameters into the individual if statements since the code is repeat…
It will improve efficiency and also errors in coding.

But I see an issue already…
We know the first if statement to execute is. But I can see it can readily take the values
from the String array I have devised.

But before I implement this, I still feel its important I use my existing newly devised
methods into test cases XXXX, LXXXX to ensure it functions before I can contemplate
this universal solution.

TEST CASE 4: Amended all formulas and displaying output for 1-4000 FAIL

I can errors have occurred below.
Since the output is too long, I have stopped the outputs after the error has occurred and
in which I can recognise a pattern.

Decimal: 0 =>

Decimal: 1 => I

Decimal: 2 => II

Decimal: 3 => III

Decimal: 4 => IV

Decimal: 5 => V

Decimal: 6 => VI

Decimal: 7 => VII

Decimal: 8 => VIII

Decimal: 9 => IX

Decimal: 10 => X

Decimal: 11 => XI

Decimal: 12 => XII

Decimal: 13 => XIII

Decimal: 14 => XIV

Decimal: 15 => XV

Decimal: 16 => XVI

Decimal: 17 => XVII

Decimal: 18 => XVIII

Decimal: 19 => XIX

Decimal: 20 => XX

Decimal: 21 => XXI

Decimal: 22 => XXII

Decimal: 23 => XXIII

Decimal: 24 => XXIV

Decimal: 25 => XXV

Decimal: 26 => XXVI

Decimal: 27 => XXVII

Decimal: 28 => XXVIII

Decimal: 29 => XXIX

Decimal: 30 => XXX

Decimal: 31 => XXXI

Decimal: 32 => XXXII

Decimal: 33 => XXXIII

Decimal: 34 => XXXIV

Decimal: 35 => XXXV

Decimal: 36 => XXXVI

Decimal: 37 => XXXVII

Decimal: 38 => XXXVIII

Decimal: 39 => XXXIX

Decimal: 40 => XL

Decimal: 41 => XLI

Decimal: 42 => XLII

Decimal: 43 => XLIII

Decimal: 44 => XLIV

Decimal: 45 => XLV

Decimal: 46 => XLVI

Decimal: 47 => XLVII

Decimal: 48 => XLVIII

Decimal: 49 => XLIX

Decimal: 50 => L

Decimal: 51 => LI

Decimal: 52 => LII

Decimal: 53 => LIII

Decimal: 54 => LIV

Decimal: 55 => LV

Decimal: 56 => LVI

Decimal: 57 => LVII

Decimal: 58 => LVIII

Decimal: 59 => LIX

Decimal: 60 => LX

Decimal: 61 => LXI

Decimal: 62 => LXII

Decimal: 63 => LXIII

Decimal: 64 => LXIV

Decimal: 65 => LXV

Decimal: 66 => LXVI

Decimal: 67 => LXVII

Decimal: 68 => LXVIII

Decimal: 69 => LXIX

Decimal: 70 => LXX

Decimal: 71 => LXXI

Decimal: 72 => LXXII

Decimal: 73 => LXXIII

Decimal: 74 => LXXIV

Decimal: 75 => LXXV

Decimal: 76 => LXXVI

Decimal: 77 => LXXVII

Decimal: 78 => LXXVIII

Decimal: 79 => LXXIX

Decimal: 80 => LXXX

Decimal: 81 => LXXXI

Decimal: 82 => LXXXII

Decimal: 83 => LXXXIII

Decimal: 84 => LXXXIV

Decimal: 85 => LXXXV

Decimal: 86 => LXXXVI

Decimal: 87 => LXXXVII

Decimal: 88 => LXXXVIII

Decimal: 89 => LXXXIX

Decimal: 90 => XC

Decimal: 91 => XC

Decimal: 92 => XC

Decimal: 93 => XC

Decimal: 94 => XC

Decimal: 95 => XC

Decimal: 96 => XC

Decimal: 97 => XC

Decimal: 98 => XC

Decimal: 99 => XC

Decimal: 100 => C

Decimal: 101 => CI

Decimal: 102 => CII

Decimal: 103 => CIII

Decimal: 104 => CIV

Decimal: 105 => CV

Decimal: 106 => CVI

Decimal: 107 => CVII

Decimal: 108 => CVIII

Decimal: 109 => CIX

Decimal: 110 => CX

Decimal: 111 => CXI

Decimal: 112 => CXII

Decimal: 113 => CXIII

Decimal: 114 => CXIV

Decimal: 115 => CXV

Decimal: 116 => CXVI

Decimal: 117 => CXVII

Decimal: 118 => CXVIII

Decimal: 119 => CXIX

Decimal: 120 => CXX

Decimal: 121 => CXXI

Decimal: 122 => CXXII

Decimal: 123 => CXXIII

Decimal: 124 => CXXIV

Decimal: 125 => CXXV

Decimal: 126 => CXXVI

Decimal: 127 => CXXVII

Decimal: 128 => CXXVIII

Decimal: 129 => CXXIX

Decimal: 130 => CXXX

Decimal: 131 => CXXXI

Decimal: 132 => CXXXII

Decimal: 133 => CXXXIII

Decimal: 134 => CXXXIV

Decimal: 135 => CXXXV

Decimal: 136 => CXXXVI

Decimal: 137 => CXXXVII

Decimal: 138 => CXXXVIII

Decimal: 139 => CXXXIX

Decimal: 140 => CXL

Decimal: 141 => CXL

Decimal: 142 => CXL

Decimal: 143 => CXL

Decimal: 144 => CXL

Decimal: 145 => CXL

Decimal: 146 => CXL

Decimal: 147 => CXL

Decimal: 148 => CXL

Decimal: 149 => CXL

Decimal: 150 => CL

[91-99] is an example.
We know the incorrect numeral would have been LXXXXI
It has performed a translation to CX but not included the I at end.

TEST CASE 5: Understanding failed conversion for 91

I have enabled debugging, this tells me issue has happened in the methods once
conversion string has been established…

I am also getting to my final objectives slower since I am refraining from using any
exception handling.

TEST CASE 6: Remediating issue with 91 by re-implementing the methods involved.

TEST CASE 6a Trying decimal 91 again PASS

TEST CASE 7: Trying decimal 91 => 100 PASS
LXXXXI

SHOULD BE HERE ELSE STATEMENT

original => conversion: LXXXXI => XCI

Decimal: 91 => XCI

LXXXXII

SHOULD BE HERE ELSE STATEMENT

original => conversion: LXXXXII => XCII

Decimal: 92 => XCII

LXXXXIII

SHOULD BE HERE ELSE STATEMENT

original => conversion: LXXXXIII => XCIII

Decimal: 93 => XCIII

LXXXXIIII

SHOULD BE HERE ELSE STATEMENT

original => conversion: LXXXXIIII => XCIIII

XCIIII

original => conversion: X => XCIV

Decimal: 94 => XCIV

LXXXXV

SHOULD BE HERE ELSE STATEMENT

original => conversion: LXXXXV => XCV

Decimal: 95 => XCV

LXXXXVI

SHOULD BE HERE ELSE STATEMENT

original => conversion: LXXXXVI => XCVI

Decimal: 96 => XCVI

LXXXXVII

SHOULD BE HERE ELSE STATEMENT

original => conversion: LXXXXVII => XCVII

Decimal: 97 => XCVII

LXXXXVIII

SHOULD BE HERE ELSE STATEMENT

original => conversion: LXXXXVIII => XCVIII

Decimal: 98 => XCVIII

LXXXXVIIII

SHOULD BE HERE ELSE STATEMENT

original => conversion: LXXXXVIIII => XCVIIII

original => conversion: XC => XCIX

Decimal: 99 => XCIX

C

Decimal: 100 => C

** Process exited - Return Code: 0 **

TEST CASE 8: Trying decimal 141 => 150
I am aware I now need to adjust method with CXXXX PASS

CXXXXI

SHOULD BE HERE ELSE STATEMENT

original => conversion: CXXXXI => CXLI

Decimal: 141 => CXLI

CXXXXII

SHOULD BE HERE ELSE STATEMENT

original => conversion: CXXXXII => CXLII

Decimal: 142 => CXLII

CXXXXIII

SHOULD BE HERE ELSE STATEMENT

original => conversion: CXXXXIII => CXLIII

Decimal: 143 => CXLIII

CXXXXIIII

SHOULD BE HERE ELSE STATEMENT

original => conversion: CXXXXIIII => CXLIIII

original => conversion: CX => CXLIV

Decimal: 144 => CXLIV

CXXXXV

SHOULD BE HERE ELSE STATEMENT

original => conversion: CXXXXV => CXLV

Decimal: 145 => CXLV

CXXXXVI

SHOULD BE HERE ELSE STATEMENT

original => conversion: CXXXXVI => CXLVI

Decimal: 146 => CXLVI

CXXXXVII

SHOULD BE HERE ELSE STATEMENT

original => conversion: CXXXXVII => CXLVII

Decimal: 147 => CXLVII

CXXXXVIII

SHOULD BE HERE ELSE STATEMENT

original => conversion: CXXXXVIII => CXLVIII

Decimal: 148 => CXLVIII

CXXXXVIIII

SHOULD BE HERE ELSE STATEMENT

original => conversion: CXXXXVIIII => CXLVIIII

original => conversion: CXL => CXLIX

Decimal: 149 => CXLIX

CL

Decimal: 150 => CL

** Process exited - Return Code: 0 **

I am now confident I can implement a universal method now…
But just before this, I want to replicate the same logic across all scenarios and finally
test 1-4000 again (decimal)

TEST CASE 9 Examining entire range 1-4000 FAIL

It can be seen that there are only two areas in which it has failed the conversion:

This more than suggests that it is an error in my coding.
The area of interest in both is CCCC
I have left this in now so that I can troubleshoot much quicker.
And it was realised that I had forgotten to overwrite the method with new implementation..

TEST CASE 8a Examining entire range 1-4000 PASS
I have now created the entire array so that I can pass parameters into the methods. I have to fine tune the
code as below in order to consolidate for tidiness.

TEST CASE 9: Tidy up the code and check successful execution
PASS

