
**** INITIAL NOTES ********** 
 
Can try recursively (going to tackle in a similar layout as CodingBat)… 
use a single method to drive logic recursively.. it will present more readily as recursive exercise… 
 
Can use %10 to get the last digit. 
Place this in an array. 
Can use % 10 again to get last digit. 
 
To create the ascending number 
Check array from right hand side, place it at end if larger 
 
To create the descending number 
check array from left hand side, place it at front if smaller number 
 
The value that gets passed into recursive call is  (number = number/10) 
This will give the number excluding the large digit. 
Do not believe any other variables required in recursive call. 
 
 
We know reached the last digit once this value is equal to 0…… 
 
EXTRA 
As per of the validation rules,  can initially run through the number inputted. 
Can readily check if 4 digits by completing   num/10   , should reach 4 and then become 0 
In regards to 2 distinct numbers… ,  can process num%10  and check value against  an integer array 
{0,1,2,3,4,5,6,7,8,9} 

 

 

********** OUTPUT ******************* 

No attempts have been made for validation to keep the simplicity flowing: 
 

 
 

 
 
 

 
 
 
 



 

********** OUTPUT ******************* 

 
 
It can be seen that in the process of  

 



 

I have changed the code slightly so that the screen output of subtraction now shows the StringJoiner as oppose 
to the Integer.ValueOf StringJoiner 
 
Previous code: 

 
 
New code: 

 

 



 
 
 
But it can be seen that it has still left me with an issue in subtraction value since it has taking off the leading 0 
with integer… 
 
//when N=1011 or N=1110 or N=0111 or N=1101     first outcome is 1110-0111=999 
//when N=1100 or N=1010 or N=0011 or N=0110     first outcome is 1010-0101=909 
//when N=1000 or N=0100 or N=0010 or N=0001     first outcome is 1000-0001=999 
I did not take screenshots, but I took copy and paste from the console. It can be seen it is erroneous the 
minimum in bold.  For now, I am ignoring this and will test all scenarios with 0 and 1 slightly further in this 
document. 
 
 
I do not believe Java has a system to preserve this 0. And in all circumstances it loses a single 0. 
 
Only option was to create an if else statement which examines if the number digits in the total is less than 4. 
It would then append an extra leading 0. 
 



 
 
 
 

 

The following output is now correct: 
 

 
 
 

 
 
 
 
 
 



*** INVESTIGATING THIS ANAMOLY ************** 
//when N=1100 or N=1010 or N=0011 or N=0110     first outcome is 1010-0101=909 
 
At this point, I am just unsure if it is human error or whether it is something computationally not correct. 
As suggested above, I am trying N for all possibilities of 0 and 1 
 
 

*** TEST CASE *** 

 

       This appears correct 

 

 
 

*** TEST CASE *** 

 

     Totally incorrect starting point 

 

 



*** TEST CASE *** 

  Totally incorrect starting point 

 
 

*** TEST CASE *** 

   Totally incorrect starting point 

 

 

 

 

 

 

 

 

 



*** TEST CASE *** 

 

  Totally incorrect starting point 
 

 
 
 

*** TEST CASE *** 

   Totally incorrect starting point 

 

 

 

 



 

*** TEST CASE *** 

 
 

 

 

*** TEST CASES *** 
No issues found: 

N=  1000, 1001, 1010, 1011, 1100, 1101, 1110 

 

 

So it seems there are issues with leading 0’s in N. 
And its creating an unexpected ascending number 


