
I have completed the coding without any syntax errors. It is a good opportunity to
perform the testing.

I immediately noticed that I had surplus logic in my design.
Since the coding is very intricate, I am creating test cases which do not align with the
cases provided in the challenge first.

TEST CASE 1: str = 1234689 FAIL

Keeping it extremely simple

It can be seen that my code is a long way off the expected outcome.
But it has at least acknowledged the block size (line 1) and that there are minimum two
blocks (line 2)
Although the last two statements are true, there is no evidence that it has explored any
other block sizes.

TEST CASE 2: str = 123456789 FAIL

We can clearly see that code is still nowhere near expectation since it has hit the most
outer return statement which is false….

It will be a long hard look at the flow of my code.
I suspect it will not be clear cut.

TEST CASE 1a: str = 1234689 FAIL
I have enhanced my code. It can be seen now again that it returns to block size.
I also can see that it has correctly performed recursion and comparing the blocks.

But it has not attempted the recursion in which it restores the String…
So I will once again examine the code further.
I will also remove the return statement

TEST CASE 2a: str = 123456789 FAIL

Even for a legitimate case in which it acknowledges the blocks, it still fails to proceed
beyond one iteration, even though it returns back to top of recursive call as expected.
So this clearly tells me that the screen output with following values might not be
consistent with the actual logic. I will try to follow this code back into the recursive call.

I can clearly see all the below statements are correct:

But such is the intensity of the logic, I performed following in the recursive call

But clearly that has affected the str..
The only intervention required is to truncate by existing block (width=n)

It has been updated as follows:

TEST CASE 3: str = 1234689 FAIL

But I am getting much closer to the expected outcome

Welcome to Online IDE!! Happy Coding :)

Number to be examined: 123456789

This is the block size: 1

There are minimum of two blocks of size: 1

This is block: 9

This is block before: 8

Performing recursion, examining block (8) with block before it(7)

This is the block size: 1

There are minimum of two blocks of size: 1

This is block: 8

This is block before: 7

Performing recursion, examining block (7) with block before it(6)

This is the block size: 1

There are minimum of two blocks of size: 1

This is block: 7

This is block before: 6

Performing recursion, examining block (6) with block before it(5)

This is the block size: 1

There are minimum of two blocks of size: 1

This is block: 6

This is block before: 5

Performing recursion, examining block (5) with block before it(4)

This is the block size: 1

There are minimum of two blocks of size: 1

This is block: 5

This is block before: 4

Performing recursion, examining block (4) with block before it(3)

This is the block size: 1

There are minimum of two blocks of size: 1

This is block: 4

This is block before: 3

Performing recursion, examining block (3) with block before it(2)

This is the block size: 1

There are minimum of two blocks of size: 1

This is block: 3

This is block before: 2

Performing recursion, examining block (2) with block before it(1)

This is the block size: 1

There are minimum of two blocks of size: 1

This is block: 2

This is block before: 1

123456789 does not consist of ascending number in any block size(n)

123456789 does not consist of ascending number in any block size(n)

123456789 does not consist of ascending number in any block size(n)

123456789 does not consist of ascending number in any block size(n)

123456789 does not consist of ascending number in any block size(n)

123456789 does not consist of ascending number in any block size(n)

123456789 does not consist of ascending number in any block size(n)

** Process exited - Return Code: 0 **

So I think I should be fairly close to the finish.

TEST CASE 4: str = 1234689 PASS

TEST CASE 4a: str = 123456789 PASS

TEST CASE 4b: str = 1234389 (examining a case where
there is not ascendency) FAIL

We can see the problem arises here, since it will not enter the else statement.
It can be looked at from two perspectives:
Firstly, it is an associated else with the if

So even if the block size was a factor (in this instance it is not), the else would not
execute.

Also, more importantly, it can be seen that block size has increased only up to 3.

Resolution:
if the length of n is even or odd number, we expect only to perform block sizes up to n/2
This will ensure there are two blocks

if the length of n is an odd number, can perform up to n+1/2

However this is the first time so far that iteration seems to be logic going forward. In
real world, I would expect to use a do while loop or similar to increment n until the
above two conditions are met for odd and even numbers.

Only other solution is to call recursive loop again until it satisfies above.

BEFORE:

AFTER:

TEST CASE 4b: str = 1234389 (examining a case where
there is not ascendency) = PASS
N.B This only passes because there are no factors in 7
except 1 and 7 since it is a prime number.
If the length of String was 15, there would be an issue
since n would have increased from 1,2,3 but it would
have not entered the else loop since the
incrementation is occurring in the if loop.

So my immediate priority is to now address the else loop.

I can see straight away that for an unknown reason I chose to execute the if with a not (!)
I rarely undertake this approach.

So this clearly points me towards making ALL contents in if => else statement….

So, this effectively means that contents in else statement should become if

statement.
And hence the boolean logic should trigger true

I am now ready to perform Test cases given in the challenge.
Mentally it now appears I have identified all the areas during my testing phase.
I am surprised I failed to pick up on a few areas. But I expected this, hence I launched
my testing at a suitable phase.

TEST CASE 5a: PASS

TEST CASE 5b: FAIL

I am just so surprised how 5a has passed and 5b has not, so I am having to investigate
the intermediate StringJoiner and StringBuilder!!

So, I will try to clear the contents.

TEST CASE 5bv2: PASS
Just to be sure no logic has had adverse effect, I retested
TEST CASE 5a and it passed

TEST CASE 5c: I consider this the first real test to process
a large count of block size and return no ascendency
PASS

TEST CASE 5d: PASS

TEST CASE 5e: PASS

