
I have now managed to progress the code further.
It was an absolute headache to try to understand the code again.
I had to get it out of my mental process that it was not entering the big else statement due to entire
blocks in sequence descending. It was here in order to configure bigger block to start the test process
again..

So I managed to get the code up to this point…….
(see code Test case v1).

So, I realise straight away that my main code is based on few basic principle changes as follows to
facilitate ascending and descending.
Some of the major changes were in this section:

And finally based on breaking this down, something triggered into my mindset.
The first time when it executed above code, recursionCall variable was set to 0 and increased in the
following area of the code:

This is still in the try loop and it has established the existing block and the block before for the first time…

So equally it would reach here again when the block size has increased.

So equally it would need to perform the following to establish the initialState again (as in the code in the
first page since execution is effectively starting afresh).

But I realised it was not possible given that recursionCall variable and it has potentially been increased
as part of the smaller block size.
So I knew at this point, I need to reset the variable back to 0 at point where it has ascertained that the
block size is not compatible with ascending or descending.

And then it will continue as below if there are exact block sizes in the initial number provided…

Or alternatively it has finished execution:

So now, this is the first time I can run full documented test cases for all scenarios.
I will also include some longer length blocks just in case also:

TEST CASE 1: (as per challenge)

TEST CASE 2: (as per challenge)

TEST CASE 3: (as per challenge)

TEST CASE 4: (as per challenge) = FAIL

I am just not able to understand at first instance why this issue has
occurred.
It can be seen that the number I inputted is exactly the same as that in
the challenge. And further more, it can be seen that the blocks are
size 6 and it is not a descending sequence.

So at this point, I will try to create a block size of two and perform
descending. I will ensure I also use four blocks.

TEST CASE 4a = FAIL

So the issues are failing when performing:

descending numbers of block size two (in which it has reached block size 4 and terminated)
descending numbers of block size three (in which it has reached block size 6 and showed descendency
but it has created totally incorrect blocks on screen which are not part of the linear numbers
occurring!!!!)

For now, I will continue my tests since I am yet to reach the official descending testing.

So now, I am going to try ascending and configure 323, 324,325,326
Similar numbers to above, but changed the direction of the numbers.

TEST CASE 4b = PASS

And now I will try ascending but 4 x block size(2)

TEST CASE 4c = PASS

TEST CASE 5: (as per challenge)

TEST CASE 6:

TEST CASE 7:

TEST CASE 8:

TEST CASE 9:

TEST CASE 10:

I am now officially performing my descending numbers.
I will run the basic ones first.

TEST CASE 11:

TEST CASE 12:

TEST CASE 13:

This is same as Test Case 4 but it uses only less block and passes.
Perhaps it is a good chance to increase the block size here and see
the outcome…

TEST CASE 13a: Increasing numbers blocks(4) of size 3 = FAIL

This fails in exactly the same way as Test case 4

But what if I now make sure that each of the four blocks also has
digits that are descending

TEST CASE 13b: Leaving number blocks 4 of size 3 , setting 536
=>532 = PASS

So this issue is ONLY occurring when the individual block does not
consist of descending numbers. And it causes a scramble for an odd
reason…
We can just quickly try ascending sequence with 4 blocks of size 3

TEST CASE 13c: Leaving number blocks 4 of size 3 , ascending but
digits of last block not ascending = FAIL

I will now quickly change the 198 => 189

TEST CASE 13d: Leaving number blocks 4 of size 3 , ascending all
digits in each block

So it is the same for descending and ascending, if one block has digits
in incorrect order it affects the outcome.
So only area for me to test is if its only related to the last block or
irrelevant.

TEST CASE 13e: Leaving number blocks 4 of size 3 , ascending but
digits of penultimate block not ascending = FAIL

I will quickly try this similar to TEST CASE 13a , but this time the
penultimate block will have numbers that are not descending

TEST CASE 13f: Similar to 13a, but this time the penultimate digits in
block will not be descending = PASS

TEST CASE 14:

TEST CASE 15:

ANALYSIS

SO AFTER ALL THE TESTING, THIS IS STATE OF PLAY:

For for descending and ascending ascending sequences, if the last
block (most right hand side) has digits in incorrect order it affects the
outcome.
This has been shown for numerous block sizes

So, there is something relating to operations undertaken in which it
has examined the first block (as in that appearing in the inputted
number), which is having an adverse effect as such:

TEST CASE 16: I will do my investigations based on this failure and

the screen outputs:

I can see straight away that my results are looking much closer to expectations:

It can be seen immediately that

And with an element of severe luck and persistence, I can see that it has infact given the correct output!!!

So now, I will run through all my test cases again including 13a, 13b…..
And I am hoping this is the final piece of the jigsaw… It has been a totally mentally exhausting challenge.

TEST CASE 1: (as per challenge) = FAIL (previously PASS)

TEST CASE 2: (as per challenge) = PASS

TEST CASE 3: (as per challenge) = PASS

TEST CASE 4: (as per challenge) = PASS (previously failed)

TEST CASE 4a = FAIL (previously failed)

TEST CASE 4b = PASS

TEST CASE 4c = PASS

TEST CASE 5: (as per challenge) = PASS

TEST CASE 6: FAIL (previously PASS)

TEST CASE 7: FAIL (previously PASS)

At this point, although some test cases have passed that previously failed…

It can be seen the impact of instead of initialState=”Ascending”~

I have investigated it as follows

I will quickly revisit all my test cases above…

TEST CASE 7: Applied fix PASS
So I have now run the test again:

TEST CASE 6: PASS

TEST CASE 4a: FAIL

TEST CASE 1: PASS

I will now continue rest of the tests, so far there are two failing test cases

TEST CASE 8: PASS

TEST CASE 9: PASS (previously FAIL)

TEST CASE 10: PASS (previously FAIL)

TEST CASE 11: FAIL (PREVIOUSLY PASS)

TEST CASE 12: FAIL (PREVIOUSLY PASS)

I think its quite important to understand the failed cases before
proceeding much further.

TEST CASE 13: FAIL (PREVIOUSLY PASS)

UNFORTUNATELY IT WAS GETTING TOO OUT OF CONTROL, THE
MOMENT I TRIED TO PATCH ONE AREA, IT CAUSED SOMETHING ELSE
TO DYSFUNCTION.
SO I HAVE ROLLED MY CODE BACK.. IT WAS APPROXIMATELY
BEFORE IMPLEMENTATIONS IN TEST CASE 16 OCCURRED.

I have rebuilt the code up again.
And unfortunately find my self in the situation where I have to run
through all the tests..
This will be my final attempt…

