| have now managed to progress the code further.

It was an absolute headache to try to understand the code again.

I had to get it out of my mental process that it was not entering the big else statement due to entire
blocks in sequence descending. It was here in order to configure bigger block to start the test process
again..

So | managed to get the code up to this point.......

(see code Test case v1).

1y RS HOUGHTS ARE ONM HOW THE FO OWING (UNDER MNED GREEN) CAM
v RS UUG > ARE UN ROUW E FULLUOWING (UNUERLINED GREEN) LAN

|Firal static String str

So, | realise straight away that my main code is based on few basic principle changes as follows to
facilitate ascending and descending.
Some of the major changes were in this section:

efore str.substring((str.leng 0 =
nis ¢ an not I
.valueOf (bl t'cjﬁ ariable
. ot arison
fro ck the

o
[:
o 3

FIGURE 1

FIGURE 2

n.out.println(”R

¢ = str.substring(str.length()-n, str.le

! NDING B
.substring(str.length()-n, ~. length(
blockBefore = str.substring((str.length() (2*n)), (str.length()-n));

if (initialstate-=

if (ascNums.length()==0)

sj.add(blockBEFDrEBlbckj;

N - sj.add(bl

3 A 4 -8 (blo . 3 (blockBeforeBlock);
D1 E E sj.add(blockBefore); .

;UéE:. LUATE TL :j.add (blockBefor
= £ j (block);

-

BUT FIGURE 1

em . out. println(”1WHEN
.out.println{sequence); : out.println("”2WHEN--------+
sj.add(blockBeforeBlock); : .out.println(sequence);
j (blockBeforeBlock);

+ ascNums);

" " + initialstate + " number in any

=m.out.println(strBackup +

And finally based on breaking this down, something triggered into my mindset.
The first time when it executed above code, recursionCall variable was set to 0 and increased in the
following area of the code:

This is stillin the try loop and it has established the existing block and the block before for the first time...

tem.out.println{"This is block: ™ + block);

el

tem.out.println({"This block before:

+ blockBefore);

if ({Long.valueOf({blockBefore))<Long.valuedf(block))
{

recursionCall++;

So equally it would reach here again when the block size has increased.

So equally it would need to perform the following to establish the initialState again (as in the code in the
first page since execution is effectively starting afresh).

But | realised it was not possible given that recursionCall variable and it has potentially been increased
as part of the smaller block size.

So | knew at this point, | need to reset the variable back to 0 at point where it has ascertained that the
block size is hot compatible with ascending or descending.

"+ n);
sequence=""};
ngBuilder(™™);
sj=new Stringloiner(

recursionCall=8;

And then it will continue as below if there are exact block sizes in the initial number provided...
it (str.length()%n==8)
T
L

return ascending(str);

" + initialState + " number in any e " "(n): " + aschums);

So now, this is the first time | can run full documented test cases for all scenarios.
I will also include some longer length blocks just in case also:

TEST CASE 1: (as perchallenge)

final static String str = "123124125";

123 are digit(s) of first block n{3) of 123124125

123124125 consists of ascending numbers of group size(3): 123,124,135,

ascending("123124125") — true
// Contains a set of consecutive ascending numbers
// if grouped into 3's : 123, 124, 125

TEST CASE 2: (as per challenge)
final static String str = "181112131415";

18 are digit(s) of first block n(2) of 181112131415
181112131415 consists of ascending numbers of group size(2): 10,11,12,13,14,15,

ascending("101112131415") — true
// Contains a set of consecutive ascending numbers
// if grouped into 2's : 10, 11, 12, 13, 14, 15

TEST CASE 3: (as per challenge)

final static

This is block before: 5
Performing recursion, restoring original String(32332432536)
This is the block size: 2

Value of block size has been increased to: 3

String length: 11

Block size: 3

32332432536 does not consist of ascending number in any block size 3(n):

ascending("32332432536") — false
// Regardless of the grouping size, the numbers can't be consecutive.

TEST CASE 4: (as per challenge) = FAIL

324323 are digit(s) of first block n(6) of 326325324323

326325324323 consists of descending numbers of group size(6): 324323,326325

ascending("326325324323") — false
// Though the numbers (if grouped into 3's) are consecutive but descending.

| am just not able to understand at first instance why this issue has
occurred.

It can be seen that the number | inputted is exactly the same as that in
the challenge. And further more, it can be seen that the blocks are
size 6 and it is not a descending sequence.

So at this point, | will try to create a block size of two and perform
descending. | will ensure | also use four blocks.

TEST CASE 4a =FAIL

final static String str = "3

Block size: 4

3231382928 does not consist of ascending number in any block size 4(n):

So the issues are failing when performing:

descending numbers of block size two (in which it has reached block size 4 and terminated)
descending numbers of block size three (in which it has reached block size 6 and showed descendency
but it has created totally incorrect blocks on screen which are not part of the linear numbers
occurring!!!!)

For now, | will continue my tests since | am yet to reach the official descending testing.

So now, | am going to try ascending and configure 323, 324,325,326
Similar numbers to above, but changed the direction of the numbers.

TEST CASE 4b = PASS

final static String

323 are digit(s) of first block n({3) of 323324325326
323324325326 consists of ascending numbers of group size(3): 323,324,325%,326,

And now | will try ascending but 4 x block size(2)

TEST CASE 4¢c = PASS

final static String str- = "32333435";

32 are digit(s) of first block n(2) of 32333435
32333435 consists of ascending numbers of group size(2): 32,33,34,35,

TEST CASE 5: (as per challenge)

ascending("666667") — true
// Consecutive numbers: 666 and 667.

TEST CASE 6:

Fiﬂsl static 5tring str = "123456789";

1 are digit(s) of first block n{1l) of 123458780

123456789 consists of ascending numbers of group size{1): 1,2,3,4,5,6,7,8,9,

TEST CASE 7:

123 are digit(s) of first block n{3) of 123124125

123124125 consists of ascending numbers of group size(3): 123,124,125,

TEST CASE 8:

inal static St

123 are digit{s) of first block n{3) of 123124215

123124215 consists of ascending numbers of group size(3): 123,124,215,

TEST CASE 9:

final static St g

12321 are digit(s) of first block n(5) of 123212421543452

123212421543452 consists of ascending numbers of group size(5): 12321,24215,43452,

TEST CASE 10:

final static String str = 123452467956

12345 are digit(s) of first block n(5) of 123452467956789
123452467956789 consists of ascending numbers of group size(5): 12345,24679,56789,

| am now officially performing my descending numbers.

| will run the basic ones first.

TEST CASE 11:

final static S

8 are digit(s) of first block n(l) of 98765431

98765431 consists of descending numbers of group size(1): 9,8,7,6,5,4,3,1,

542 are digit(s) of first block n{3) of 543542541
543542541 consists of descending numbers of group size(3): 543,542,541,

TEST CASE 13:

542541526 consists of descending numbers of group size(3): 542,541,526,

This is same as Test Case 4 but it uses only less block and passes.

Perhaps it is a good chance to increase the block size here and see

the outcome...

TEST CASE

final static St

13a: Increasing numbers blocks(4) of size 3 =FAIL

r

541536 are digit(s) of first block n(6) of 543542541536

543542541536 consists of descending numbers of group size(6): 541536,543542

This fails in exactly the same way as Test case 4

But what if | now make sure that each of the four blocks also has

digits that are descending

TEST CASE 13b: Leaving number blocks 4 of size 3, setting 536
=>532 = PASS

final static String str = 7543542541532

542 are digit(s) of first block n{3) of 543542541532
543542541532 consists of descending numbers of group size(3): 543,542,541,532

So this issue is ONLY occurring when the individual block does not

consist of descending numbers. And it causes a scramble for an odd

reason...
We can just quickly try ascending sequence with 4 blocks of size 3

TEST CASE 13c: Leaving number blocks 4 of size 3, ascending but
digits of last block not ascending = FAIL

final static String s

123134 are digit(s) of first block n(6) of 123134167198

123134167198 consists of ascending numbers of group size(6): 123134,167198

| will now quickly change the 198 => 189

TEST CASE 13d: Leaving number blocks 4 of size 3, ascending all
digits in each block

final static String s

123 are digit(s) of first block n(3) of 123134167139
123134167189 consists of ascending numbers of group size(3): 123,134,167,189,

So itis the same for descending and ascending, if one block has digits
in incorrect order it affects the outcome.
So only area for me to test is if its only related to the last block or

irrelevant.

TEST CASE 13e: Leaving number blocks 4 of size 3, ascending but
digits of penultimate block not ascending = FAIL

final static String s

123 are digit(s) of first block n(3) of 123134176189
123134176189 consists of ascending numbers of group size(3): 123,134,176,189,

| will quickly try this similar to TEST CASE 13a, but this time the
penultimate block will have numbers that are not descending

TEST CASE 13f: Similar to 13a, but this time the penultimate digits in
block will not be descending = PASS

final static String str = "5435

542 are digit(s) of first block n{3) of 5435432539532
543542539532 consists of descending numbers of group size(3): 543,542,539,532,

TEST CASE 14:

final static String str = "434

24215 are digit(s) of first blo of 434522421512321
434522421512321 consists of descending numbers of group size(5): 43452,24215,12321,

TEST CASE 15:

final static String str = "98

87652 are digit(s) of first block n(5) of 987348765276543

987348765276543 consists of descending numbers of group size(5): 98734,87652,76543,

ANALYSIS

SO AFTER ALL THE TESTING, THIS IS STATE OF PLAY:
For for descending and ascending ascending sequences, if the last

block (most right hand side) has digits in incorrect order it affects the
outcome.

This has been shown for numerous block sizes

So, there is something relating to operations undertaken in which it
has examined the first block (as in that appearing in the inputted
number), which is having an adverse effect as such:

There are minimum of two blocks of size:

This is block: 69

This is block before: 87

Performing recursion, restoring original String{8769)
This is the block size: 3

Value of block size has been increased to: 4

String length: 4

Block size: 4

This is the block size: 4

8769 does not consist of ascending number in any block size 4(n):

TEST CASE 16:

the screen outputs:

Welcome to Online IDE!! Happy Coding :)
Number to be examined: 235461
This is the block size: 1

There are minimum of two blocks of si
%% IN TRY STATEMENT *=
DESCENDING BLOCK

This is block: &

This is block before: 1

Performing recursion, examining block (1) with block before it(4)
#*+2=THIS IS THE SEQUENCE: 4,6,1,

This is the block size: 1

There are minimum of two blocks of size:

##%% TN TRY STATEMENT *##*

This is block: 4

This is block before: 6

Performing recursion, restoring original String({235461)

This is the block size: 2

There are minimum of two blocks of size:

¥* IN TRY STATEMENT *¥

This is block: 54

This is block before: 61

Performing recursion, restoring eriginal String(235461)
This is the block size: 3

There are minimum of two blocks of size:

+ IN TRY STATEMENT *

This is block:

This is block before: 461 0 <Long.valuedf(black)

Performing recursion, restoring original String(235461)

This is the block size: 4

Value of block size has been increased to: 5

String length: & string c| eBloc! str.s ring((str.length() - (2*n)),(str.length()-(
Block size: 5

235461 does not consist of descending number in any block size 5(n):

Welcome to Online IDE!! Happy Coding
Number to be examined: 235461

This is the block size: 1

There are minimum of two blocks of s
**** IN TRY STATEMENT **=*
DESCENDING BLOCK

This i

This is block before: 1

INITAL STATE WAS DECENDING

Performing recursion, examining block before current (6) with block before it(4)
**+*£THIS IS THE SEQUENCE: 4,6,6,
This is the block size: 1

There are minimum of two blocks of si
%%+ IN TRY STATEMENT ***=

This is block: 4

This is block before: &

Performing recursion, restoring original String(235461)
This is the block size: 2

There are minimum of twe blocks of si

*##%% TN TRY STATEMENT *##%

This is block: 54

This is block before: 61

Performing recursion, restoring original String{235461)
This is the block size: 3

There are minimum of two blocks

¥* IN TRY STATEMENT *¥

This is block: 235

This is block before: 461

Performing recursion, restoring eriginal &

This is the block size: 4

Value of block si has been increased to:

String length: &

Block size: 5

235461 does not consist of descending number in any block size 5(n):

(blockBefore))<Lon

ntln(" ENDING

.length()-n));

| can see straight away that my results are looking much closer to expectations:

There are minimum of two blocks of =zize: 2
¥¥x* IN TRY STATEMENT **=*

This is block: 61

This is block before: 54

INITAL STATE WAS DECENDING

Performing recursion, examining block before current (61) with block before it(23)
#*THIS IS THE SEQUENCE: 23,561,681,

This is the block size: 2

There are minimum of two blocks of size: 2
¥¥x* IN TRY STATEMENT **=*

This is block: 54

This is block before: 23

**** TN CATCH STATEMENT =%**

23 are digit(s) of first block n{2) of 235481

235461 consists of descending numbers of group size(2): 23,61,61,

It can be seen immediately that

Welcome to Online IDE!! Happy Coding :)
Number to be examined: 235461
This is the block size: 1
There are minimum of two blocks of size: 1
**¥*+ IN TRY STATEMENT **=*
There are minimum of two blocks of size: 2
**** IN TRY STATEMENT ***=*
This is block: 61
This is block before: 54
INITAL STATE WAS DECENDING
Performing recursion, examining block before current (61) with block before it(23)
*****THIS IS THE SEQUENCE: 23,61,61,
This is the block size: 2

There are minimum of two blocks of size: 2

**¥= IN TRY STATEMENT **=*%

This is block: 54

This is block before: 23

#¥¥* TN CATCH STATEMENT ****

23 are digit(s) of first block n(2) of 235461

235461 consists of descending numbers of group size(2): 23,61,61,

m.out.println{™’ ¥ IN TRY STATEMENT
blockBefore = str.substring((str.length() - (2*n}),(str.length()-n));

if (recursionCall>8)
{
if (Long.valueOf({blockBefore)<Long.valueOf({block))
I
L
state="ASCENDING";
3
if (Long.valueOf(blockBefore)>Long.valueOf(block))
{
state="DESCENDING";

if (initialState=="ascending”} if (initialStatEr-"desceﬂﬂ
{

if |(state.equals("DESCENDING"))] J if (state.equals("ASCENDING"))

And with an element of severe luck and persistence, | can see that it has infact given the correct output!!!

23 are digit(s) of first block n(2) of 235461

235461 consists of ASCENDING numbers of group size(2): 23,54,61,

So now, | will run through all my test cases again including 13a, 13b.....
And | am hoping this is the final piece of the jigsaw... It has been a totally mentally exhausting challenge.

TEST CASE 1: (as perchallenge) = FAIL (previously PASS)

123 are digit(s) of first block n{3) of 123124125
123124125 consists of ASCENDING numbers of group size(3): ,

ascending("123124125") — true
// Contains a set of consecutive ascending numbers
// if grouped into 3's : 123, 124, 125

TEST CASE 2: (as per challenge) = PASS
String str = "161112131415";

18 are digit(s) of first block n(2) of 181112131415
181112131415 consists of ASCENDING numbers of group size(2): 10,11,12,13,14,15,

ascending("101112131415") — true
// Contains a set of consecutive ascending numbers
// if grouped into 2's : 10, 11, 12, 13, 14, 15

TEST CASE 3: (as per challenge) = PASS

String length: 11

Block size: 3

32332432536 does not consist of number in any block size 3(n):

ascending("32332432536") — false
// Regardless of the grouping size, the numbers can't be consecutive.

TEST CASE 4: (as per challenge) = PASS (previously failed)

Ay

323 are digit(s) of first block n(3) of 323324325326

323324325326 consis of ASCENDING numbers of group size(3): 323,324,325,326,

ascending("326325324323") — false
// Though the numbers (if grouped into 3's) are consecutive but descending.

TEST CASE 4a = L (DI’eVIOUSlV failed)

Block size: 4

3231382928 does not consist of ascending number in any block size 4(n):

TEST CASE 4b = PASS

323 are digit(s) of first block n(3) of 323324325326
323324325326 consists of ASCENDING numbers of group size(3): 323,324,325,326,

TEST CASE 4¢c = PASS

final static String sﬂ = "32333435";

32 are digit(s) of first block n(2) of 32333435

32333435 consists of ascending numbers of group size(2): 32,33,34,35,
**** IN CATCH STATEMENT ****

32 are digit(s) of first block n{2) of 32333435

32333435 consists of ASCENDING numbers of group size(2): 32,33,34,35,

TEST CASE 5: (as per challenge) = PASS

ascending("666667") — true
// Consecutive numbers: 666 and 667.

666 are digit(s) of first block n(3) of 666667

666667 consists of ASCENDING numbers of group size(3): 666,667

TEST CASE 6: FAIL (previously PASS)

1 are digit(s) of first block n(l) of 1234567829
123456789 consists of ASCENDING numbers of group size(1l): 1,2,3,4,5,6,,

TEST CASE 7: FAIL (previously PASS)

T

123 are digit(s) of first block n{3) of 123124125

123124125 consists of ascending numbers of group size(3): 123,124,125,

123 are digit(s) of first block n(3) of 1231241325
123124125 consists of ASCENDING numbers of group size(3): ,

At this point, although some test cases have passed that previously failed...

equals({"ASCENDING"))

It can be seen the impact of instead of initialState="Ascending”~

I have investigated it as follows

There are minimum of two blocks of size: 3
#**¥F IN TRY STATEMENT *¥+¥

ASCENDING BLOCK

This is block: 125

This is block before: 124

This is state:

This is initial state: ascending

f (state.equals(”

if (aschNums.length()==8)

sj.add(blockBeforeBlock);
sj.add(blockBefore);
sj.add(block);

g

em.out.println(rming recursion,

ew Stringloiner(”,

(recursionCall==8)

state=initialState;

if (recursionCall>g

.valuedf(blockBefore)<Long.valueOf{block))

tate="ASCENDING" ;

I will quickly revisit all my test cases above...

TEST CASE 7: Applied fix PASS

So | have now run the test again:

123 are digit(s) of first block n(3) of 123124135

123124125 consists of ASCENDING numbers of group size(3): 123,124,125,

TEST CASE 6: PASS

1 are digit(s) of first block n(l) of 123456789

123456789 consists of ASCENDING numbers of group size(1): 1,2,3,4,5,6,7,8,9,

TEST CASE 4a: FAIL

TEST CASE 1: PASS

I will now continue rest of the tests, so far there are two failing test cases

TEST CASE 8: PASS

final stat g str = "123 215";

123 are digit{s) of first block n{3) of 123124215

123124215 consists of ascending numbers of group size(3): 123,124,215,

123 are digit(s) of first block n{3) of 123212421543452
123212421543452 consists of ASCENDING numbers of group size(3): 123,212,421,543,452,

TEST CASE 10: PASS (previously FAIL)

final static String str = "123452467956789";

123 are digit(s) of first block n(3) of 12345246795678%
123452467956789 consists of ASCENDING numbers of group size(3): 123,452,467,956,789,

TEST CASE 11: FAIL (PREVIOUSLY PASS)

8 are digit(s) of first bloc

98765431 consists of descending numbers of group size

is is block: 9876

iz is block before: 5431

is is state:

is is initial state: DESCENDING
**** IN CATCH STATEMENT **+**
5431 are digit(s) of first block n(4) of 98765431
98765431 consists of numbers of group size(4): 5431,9876

TEST CASE 12: FAIL (PREVIOUSLY PASS)

Final static String str = "543542541"; //each 3 block descending and digit in each block descending

541532 are digit(s) of first block n(6) of 543542541532

543542541532 consists of numbers of group size(6): 541532,543542

| think its quite important to understand the failed cases before

proceeding much further.

TEST CASE 13: FAIL (PREVIOUSLY PASS)

atic String str = "542541526";

UNFORTUNATELY IT WAS GETTING TOO OUT OF CONTROL, THE
MOMENT | TRIED TO PATCH ONE AREA, IT CAUSED SOMETHING ELSE
TO DYSFUNCTION.

SO | HAVE ROLLED MY CODE BACK.. IT WAS APPROXIMATELY
BEFORE IMPLEMENTATIONS IN TEST CASE 16 OCCURRED.

| have rebuilt the code up again.
And unfortunately find my self in the situation where | have to run

through all the tests..
This will be my final attempt...

