Code analysis explanation https://chatgpt.com/c/69287006-8794-832f-a0fa-0bb9d35768f0

| have another piece of code, | just want for you to
understand my mental processes and analyse it..
/*

Online Java - IDE, Code Editor, Compiler

Online Java is a quick and easy tool that helps you to
build, compile, test your programs online.

*/
import java.util.*;

public class Main

{
static String sequence;
static int n=1;

final static String str = "123456789"; //whole block
ascending

//final static String str = "123124125";, //each 3 block
ascending and digit in each block ascending

//final static String str = "123124215"; // each 3 block
ascending ONLY (215 not ascending)

//final static String str = "101112131415";
//final static String str = "32332432536";
//final static String str = "326325324323",;
//final static String str = "666667";

final static String strBackup=str;
static StringJoiner sj = new StringJoiner(",");
static StringBuilder ascNums = new StringBuilder("");

public static void main(String[] args)

{
System.out.printin("Welcome to Online IDE!! Happy

Coding)");
System.out.printin(*"Number to be examined: " + str);
ascending(str);

public static Strina ascendina(Strina str)

1 of 8 27/11/2025, 15:41

Code analysis explanation

2 of 8

https://chatgpt.com/c/69287006-8794-832f-a0fa-0bb9d35768f0

String blockBefore="",;
System.out.printIn("This is the block size: " + n);

if((str.length()%n==0))
{
if (I(str.length()<(2*n)))
{
System.out.printIn(“There are minimum of two
blocks of size: " + n);
String block = str.substring(str.length()-n,
str.length());

try
{
blockBefore = str.substring((str.length() -

(2*n)),(str.length()-n));

System.out.printIn("This is block: " + block);
System.out.printIn("This is block before: " +
blockBefore);

if
((Long.valueOf(blockBefore)) <Long.valueOf(block))
{
String blockBeforeBlock =
str.substring((str.length() - (3*n)),(str.length()-(2*n)));

System.out.printIn("Performing recursion,
examining block " + "("+blockBefore+")" +" with block
before it" + "("+blockBeforeBlock+")");

sj=new StringJoiner(",");

if (@ascNums.length()==0)

{
sj.add(blockBeforeBlock);
sj.add(blockBefore);
sj.add(block);

}

else

{
sj.add(blockBeforeBlock);

27/11/2025, 15:41

Code analysis explanation

3 0of 8

https://chatgpt.com/c/69287006-8794-8321-

sequence = sj.toString()+",";

o

ascNums.insert(0,sequence);

System.out.printIn("*****THIS IS THE
SEQUENCE: " + ascNums);

return ascending(str.substring(0,
(str.length()-n)));

}

else
{
n=n+1;
System.out.printIn("Performing recursion,
restoring original String");
sj=new StringJoiner(",");
ascNums=new StringBuilder("");

return ascending(strBackup);

}
catch (StringIndexOutOfBoundsException |
ArraylndexOutOfBoundsException e)

{

if (ascNums.length()==0)
{
sj.add(blockBefore);
sj.add(block);
ascNums.insert(0,sj.toString());

System.out.printin(blockBefore + " are digit(s)
of first block n"+"("+n+")" + " of " + strBackup);

System.out.printin(strBackup + " consists of
ascending numbers of group size" +"("+n+"): " +
ascNums);

System.exit(0);
return null;

a0fa-0bb9d357681(

27/11/2025, 15:41

Code analysis explanation https://chatgpt.com/c/69287006-8794-832f-a0fa-0bb9d35768f0

4 of 8

else

{
n++;
System.out.printIn("Value of block size has been
increased to: " + n);
sequence="";
ascNums=new StringBuilder("");

sj=new StringJoiner(",");

str=strBackup;

System.out.printIn("String length: " + str.length());

System.out.printIn("Block size: " + n);

if (str.length()%n==0)
{

return ascending(str);

System.out.printIn(strBackup + " does not consist of
ascending number in any block size " + n + "(n): " +
ascNums);

System.exit(0);

return null;

Thanks for sharing this! Let's carefully unpack your mental process and analyze what this

code is doing. I'll go step by step.

High-Level Purpose

From reading your code, your goal seems to be:

1. Take a string of digits (like "123456789").

2. Try to split it into blocks of size n, where each block is interpreted as a number.

27/11/2025, 15:41

Code analysis explanation https://chatgpt.com/c/69287006-8794-832f-a0fa-0bb9d35768f0

3. Check whether the numbers form an ascending sequence.
4. If not, increase n and try again, recursively, until a valid ascending block sequence is

found or all possibilities are exhausted.

The program also handles several variants:

e Ascending overall (123456789).
e Ascending within 3-digit blocks (123124125).

e Cases where some blocks are not ascending (123124215).

Key Variables & Logic

Variable Purpose
str The input string you want to examine.
n Current block size (starts at 1, incremented if sequence fails).
strBackup A backup of the original string (used to restart recursion with new
n).
sj StringJoiner to build a comma-separated list of ascending
blocks.
ascNums StringBuilder storing the current ascending sequence.
sequence Temporary string holding joined blocks for insertion into ascNums .
Core Logic

1. Check divisibility:

java Copy code

if((str.length() % n == 9))

Ensures blocks of size n fit evenly into the string.
2. Handle the last block:

java Copy code

String block = str.substring(str.length()-n, str.length());

50f8 27/11/2025, 15:41

Code analysis explanation https://chatgpt.com/c/69287006-8794-832f-a0fa-0bb9d35768f0

String blockBefore = str.substring(str.length()-(2*n), str.length()-n);

e block — thelast n digits
e blockBefore — the block immediately before the last

3. Compare numeric values:

java Copy code

if ((Long.valueOf(blockBefore)) < Long.valueOf(block))

Checks if the sequence is ascending for these two blocks.

4. Recursive call:

java Copy code
return ascending(str.substring(0, (str.length()-n)));

e If ascending, recurse on the remaining string (removing the last block).
e Builds the sequence in ascNums by prepending blocks.
5. Failure case:
¢ |If blocks are not ascending, increase n and restart with strBackup .
6. Edge handling:
e StringIndexOutOfBoundsException occurs when recursion reaches the first block

¢ At that point, the sequence is complete, and program prints it.

Observations on Your Mental Process

From this code, | see you're thinking in these steps:

1. Divide-and-conquer: Examine the string from the end, checking small blocks, then
gradually extending block size.

2. Recursion-first approach: You rely heavily on recursion to “peel off” blocks from the
end.

3. Dynamic block size: You realize not all strings can be split with block size 1, so you
systematically try larger block sizes.

4. Robustness: You handle exceptions (like running out of string) as signals that
recursion has finished.

5. Tracking sequences: You carefully build ascNums with a StringJoiner , inserting

blocks in correct order.

6 of 8 27/11/2025, 15:41

Code analysis explanation https://chatgpt.com/c/69287006-8794-832f-a0fa-0bb9d35768f0

Strengths

e \ery systematic approach to finding ascending blocks.
¢ Flexible: works with different block sizes and sequences.
e Recursive logic matches the mental model of “check last block, then recurse on

remaining.”

Potential Improvements / Considerations

1. static variables for state (n, ascNums, sj) make recursion less clean:
e Recursion is easier to reason about if all state is passed as parameters, rather
than modified globally.
2. Repeated code & redundancy:
e Reinitializing sj, ascNums multiple times is verbose. Could be simplified.
3. Performance:
e Each time the sequence fails, it restarts from scratch with strBackup . Could try
smarter strategies to avoid rechecking known valid parts.
4. Long conversion:
e You use Long.valueOf() to compare blocks. Works for small blocks, but may fail

for very long strings (>19 digits). Could compare strings lexicographically instead.

Summary

Your code is essentially implementing a block-wise ascending sequence detector with

recursive backtracking and dynamic block size search.

e |t's a very explicit, step-by-step exploration, matching a mental model of peeling off
last blocks and checking order.

e There's careful handling of edge cases and systematic adjustment of n.

In short: you're thinking like a recursive detective, examining each block carefully and

willing to backtrack when things fail.

If you want, | can draw a step-by-step diagram showing how your recursion unfolds for
"123124125" — it really makes your thought process visual. It would make your mental

flow obvious at a glance.

7 of 8 27/11/2025, 15:41

Code analysis explanation https://chatgpt.com/c/69287006-8794-832f-a0fa-0bb9d35768f0

Do you want me to do that?

@O PE T -

8 of 8 27/11/2025, 15:41

