
I have another piece of code, I just want for you to
understand my mental processes and analyse it..
/*
Online Java - IDE, Code Editor, Compiler

Online Java is a quick and easy tool that helps you to
build, compile, test your programs online.
*/

import java.util.*;

public class Main
{
 static String sequence;
 static int n=1;

 final static String str = "123456789"; //whole block
ascending
 //final static String str = "123124125"; //each 3 block
ascending and digit in each block ascending
 //final static String str = "123124215"; // each 3 block
ascending ONLY (215 not ascending)

 //final static String str = "101112131415";
 //final static String str = "32332432536";
 //final static String str = "326325324323";
 //final static String str = "666667";

 final static String strBackup=str;
 static StringJoiner sj = new StringJoiner(",");
 static StringBuilder ascNums = new StringBuilder("");

 public static void main(String[] args)
 {
 System.out.println("Welcome to Online IDE!! Happy
Coding :)");
 System.out.println("Number to be examined: " + str);
 ascending(str);
 }

 public static String ascending(String str)

Code analysis explanation https://chatgpt.com/c/69287006-8794-832f-a0fa-0bb9d35768f0

1 of 8 27/11/2025, 15:41

 public static String ascending(String str)
 {
 String blockBefore="";
 System.out.println("This is the block size: " + n);

 if((str.length()%n==0))
 {
 if (!(str.length()<(2*n)))
 {
 System.out.println("There are minimum of two
blocks of size: " + n);
 String block = str.substring(str.length()-n,
str.length());

 try
 {
 blockBefore = str.substring((str.length() -
(2*n)),(str.length()-n));

 System.out.println("This is block: " + block);
 System.out.println("This is block before: " +
blockBefore);

 if
((Long.valueOf(blockBefore))<Long.valueOf(block))
 {
 String blockBeforeBlock =
str.substring((str.length() - (3*n)),(str.length()-(2*n)));

 System.out.println("Performing recursion,
examining block " + "("+blockBefore+")" +" with block
before it" + "("+blockBeforeBlock+")");
 sj=new StringJoiner(",");

 if (ascNums.length()==0)
 {
 sj.add(blockBeforeBlock);
 sj.add(blockBefore);
 sj.add(block);
 }
 else
 {
 sj.add(blockBeforeBlock);
 }

Code analysis explanation https://chatgpt.com/c/69287006-8794-832f-a0fa-0bb9d35768f0

2 of 8 27/11/2025, 15:41

 }

 sequence = sj.toString()+",";

 ascNums.insert(0,sequence);

 System.out.println("*****THIS IS THE
SEQUENCE: " + ascNums);

 return ascending(str.substring(0,
(str.length()-n)));
 }
 else
 {
 n=n+1;
 System.out.println("Performing recursion,
restoring original String");
 sj=new StringJoiner(",");
 ascNums=new StringBuilder("");

 return ascending(strBackup);
 }
 }
 catch (StringIndexOutOfBoundsException |
ArrayIndexOutOfBoundsException e)
 {

 if (ascNums.length()==0)
 {
 sj.add(blockBefore);
 sj.add(block);
 ascNums.insert(0,sj.toString());
 }

 System.out.println(blockBefore + " are digit(s)
of first block n"+"("+n+")" + " of " + strBackup);
 System.out.println(strBackup + " consists of
ascending numbers of group size" +"("+n+"): " +
ascNums);

 System.exit(0);
 return null;
 }
 }

Code analysis explanation https://chatgpt.com/c/69287006-8794-832f-a0fa-0bb9d35768f0

3 of 8 27/11/2025, 15:41

 }
 }

 else
 {
 n++;
 System.out.println("Value of block size has been
increased to: " + n);
 sequence="";
 ascNums=new StringBuilder("");
 sj=new StringJoiner(",");

 str=strBackup;

 System.out.println("String length: " + str.length());
 System.out.println("Block size: " + n);

 if (str.length()%n==0)
 {
 return ascending(str);
 }
 }

 System.out.println(strBackup + " does not consist of
ascending number in any block size " + n + "(n): " +
ascNums);
 System.exit(0);
 return null;

 }
}

Thanks for sharing this! Let’s carefully unpack your mental process and analyze what this

code is doing. I’ll go step by step.

High-Level Purpose

From reading your code, your goal seems to be:

1. Take a string of digits (like "123456789").

2. Try to split it into blocks of size n , where each block is interpreted as a number.

Code analysis explanation https://chatgpt.com/c/69287006-8794-832f-a0fa-0bb9d35768f0

4 of 8 27/11/2025, 15:41

3. Check whether the numbers form an ascending sequence.

4. If not, increase n and try again, recursively, until a valid ascending block sequence is

found or all possibilities are exhausted.

The program also handles several variants:

Ascending overall (123456789).

Ascending within 3-digit blocks (123124125).

Cases where some blocks are not ascending (123124215).

Key Variables & Logic

Variable Purpose

str The input string you want to examine.

n Current block size (starts at 1, incremented if sequence fails).

strBackup A backup of the original string (used to restart recursion with new

n).

sj StringJoiner to build a comma-separated list of ascending

blocks.

ascNums StringBuilder storing the current ascending sequence.

sequence Temporary string holding joined blocks for insertion into ascNums .

Core Logic

1. Check divisibility:

Ensures blocks of size n fit evenly into the string.

2. Handle the last block:

java

if((str.length() % n == 0))

Copy code

java

String block = str.substring(str.length()-n, str.length());

Copy code

Code analysis explanation https://chatgpt.com/c/69287006-8794-832f-a0fa-0bb9d35768f0

5 of 8 27/11/2025, 15:41

block → the last n digits

blockBefore → the block immediately before the last

3. Compare numeric values:

Checks if the sequence is ascending for these two blocks.

4. Recursive call:

If ascending, recurse on the remaining string (removing the last block).

Builds the sequence in ascNums by prepending blocks.

5. Failure case:

If blocks are not ascending, increase n and restart with strBackup .

6. Edge handling:

StringIndexOutOfBoundsException occurs when recursion reaches the first block.

At that point, the sequence is complete, and program prints it.

Observations on Your Mental Process

From this code, I see you’re thinking in these steps:

1. Divide-and-conquer: Examine the string from the end, checking small blocks, then

gradually extending block size.

2. Recursion-first approach: You rely heavily on recursion to “peel off” blocks from the

end.

3. Dynamic block size: You realize not all strings can be split with block size 1, so you

systematically try larger block sizes.

4. Robustness: You handle exceptions (like running out of string) as signals that

recursion has finished.

5. Tracking sequences: You carefully build ascNums with a StringJoiner , inserting

blocks in correct order.

String blockBefore = str.substring(str.length()-(2*n), str.length()-n);

java

if ((Long.valueOf(blockBefore)) < Long.valueOf(block))

Copy code

java

return ascending(str.substring(0,(str.length()-n)));

Copy code

Code analysis explanation https://chatgpt.com/c/69287006-8794-832f-a0fa-0bb9d35768f0

6 of 8 27/11/2025, 15:41

Strengths

Very systematic approach to finding ascending blocks.

Flexible: works with different block sizes and sequences.

Recursive logic matches the mental model of “check last block, then recurse on

remaining.”

Potential Improvements / Considerations

1. static variables for state (n , ascNums , sj) make recursion less clean:

Recursion is easier to reason about if all state is passed as parameters, rather

than modified globally.

2. Repeated code & redundancy:

Reinitializing sj , ascNums multiple times is verbose. Could be simplified.

3. Performance:

Each time the sequence fails, it restarts from scratch with strBackup . Could try

smarter strategies to avoid rechecking known valid parts.

4. Long conversion:

You use Long.valueOf() to compare blocks. Works for small blocks, but may fail

for very long strings (>19 digits). Could compare strings lexicographically instead.

Summary

Your code is essentially implementing a block-wise ascending sequence detector with

recursive backtracking and dynamic block size search.

It’s a very explicit, step-by-step exploration, matching a mental model of peeling off

last blocks and checking order.

There’s careful handling of edge cases and systematic adjustment of n .

In short: you’re thinking like a recursive detective, examining each block carefully and

willing to backtrack when things fail.

If you want, I can draw a step-by-step diagram showing how your recursion unfolds for

"123124125" — it really makes your thought process visual. It would make your mental

flow obvious at a glance.

Code analysis explanation https://chatgpt.com/c/69287006-8794-832f-a0fa-0bb9d35768f0

7 of 8 27/11/2025, 15:41

Do you want me to do that?

Code analysis explanation https://chatgpt.com/c/69287006-8794-832f-a0fa-0bb9d35768f0

8 of 8 27/11/2025, 15:41

