

Once again, I have been drawn into a recursive challenge.
I have chosen to undertake this since I hit an anomaly with my previous palindromic
example.
And once again, this challenge has several same traits. It is expecting that the variables
provided are maintained in their native format.
However this challenge will require a subtle conversion of String to integer

LOGIC
The problem is correct in stating that there are no boundaries:

I will start with a more simplified arrangement

Assume String number1 = 4666
String number2 = 544

lengthNumber1 = number1.length = 4;
lengthNumber2 = number2.length = 3;

We know substring is zero index based
We also know that it will exclude the last value passed into it.
For instance substring(0,6) would be index 0 to 5
It is best to use single index in substring since it will take all values from this index
onwards.

Single digit is of interest when performing addition:
number1.substring(index here should be start position only, which is index of the last
digit)
number1.substring(number1.length) = index 4 = array out of bound exception)
number1.substring((number1.length-1)) = index 3 = 6

Same principle for number2.substring((number2.length-1) = index 2 = 4

So on each recursive this revised substring is passed into the method.

Questions arising so far:
* It will calculate the addition and store digit in a String total.
* This String will be passed across in recursive call.
* There is no need to pass the original number across since the total
System.out.println() can occur in non-recursive method such as main.
* When the length of either substring exceeds the other, it will perform its last addition
as per usual. It would either carry the remainder across as per usual. Otherwise if there
is no remainder, it would simply drop the outstanding digits from the longer number
downwards.
* So far I do not envisage any issues at all, but I know I have more than likely not
foreseen most issues that this problem will entail.

