| have now managed to reconstruct the code but this time using my knowledge a bit
more better of the List and for loop structures.
| have executed the code and this is the output:

TEST CASE 1: RUNNING THE REDESIGNED CODE

Input
[cr, 2, 31, [4, 5, 61, [7, 8, 911

CURRENT TRANSFORMATION: [[1, 4, 71, [1, 4, 71, [1, 4, 71]

Your Result At this moment, | am unsure of the end
[r1., 1. 11 outcome given the above transformation...
! ' But this will be final concern

Expected Result
[(ct, 4, 71, 12, 5, 81, [3, 6, 9]]

There are several positive aspects. The List<Integer> are populated with correct
number elements. Also the first List<Integer> is correct.

BUT clearly the area that requires addressing is that it has not progressed onto next
index location for matrix.get(k).

I will simply analyse the debugging information as per usual:

Output (for Debugging)

-------- Commencing transposing at index: 0

INNERLIST: [1,2,3] //Thisis correct

position: 0 //Thisis correct

counter: 0 //Thisis correct

EVER REACH

CURRENT LIST: [1]

PERFORMING BREAK

INNER LIST: [4,5,6] //Thisis correct

position: 1 //This has surprised me, | expected that position remained same, and
counter would have started from 0... Although it functions in order to populate the first
transposed List<Integer> the logic is not as expected



counter: 1

EVER REACH

CURRENT LIST: [1, 4]

PERFORMING BREAK

INNER LIST: [7, 8, 9]

position: 2 counter: 2

EVER REACH

CURRENT LIST: [1, 4, 7]

PERFORMING BREAK

IS IT HERE AFTER BREAK

CURRENT TRANSFORMATION: [[1, 4,7]] //thisis correct
———————— Commencing transposing at index: 1
//this whole section performs a repeat of the above
INNER LIST: [1, 2, 3]

position: 1 counter: 1

EVER REACH

CURRENT LIST: [1]

PERFORMING BREAK

INNER LIST: [4, 5, 6]

position: 2 counter: 2

EVER REACH

CURRENT LIST: [1, 4]

PERFORMING BREAK

INNER LIST: [7, 8, 9]

position: 3 counter: 3

EVER REACH

CURRENT LIST: [1, 4, 7]

PERFORMING BREAK

IS IT HERE AFTER BREAK

CURRENT TRANSFORMATION: [[1, 4, 71, [1, 4, 71]
-------- Commencing transposing at index: 1
//this whole section performs a repeat of the above

INNER LIST: [1, 2, 3]

position: 1 counter: 1

EVER REACH

CURRENT LIST: [1]

PERFORMING BREAK

INNER LIST: [4, 5, 6]

position: 2 counter: 2

EVER REACH CURRENT LIST: [1, 4]



PERFORMING BREAK

INNER LIST: [7, 8, 9]

position: 3 counter:

3 EVER REACH

CURRENT LIST: [1, 4, 7]

PERFORMING BREAK

IS IT HERE AFTER BREAK CURRENT TRANSFORMATION: [[1, 4, 7], [1, 4, 7], [1, 4, 7]]
//hence this is complete repeat transposition for each column and row. It has only
action first index!

TEST CASE 2: Tidied up some of the messages above, notably
identifying the correct location of code upon performing a

-------- Commencing transposing at index: 0
IS IT HERE AFTER BREAK
INNER LIST: [1, 2, 3]
position: 0

counter: 0

EVER REACH

CURRENT LIST: [1]
1position: 0 counter: 0
HERE AFTER BREAK

IS IT HERE AFTER BREAK
INNER LIST: [4, 5, 6]
position: 0

counter: 0

EVER REACH

CURRENT LIST: [1, 4]

1position: 0 counter: 0



HERE AFTER BREAK

IS IT HERE AFTER BREAK
INNER LIST: [7, 8, 9]
position: 0

counter: 0

EVER REACH

CURRENT LIST: [1, 4, 7]
1position: 0 counter: 0
HERE AFTER BREAK

CURRENT TRANSFORMATION: [[1, 4, 7]]
//1tis perfectly fine up to here

-------- Commencing transposing atindex: 1 //this is correct message
IS IT HERE AFTER BREAK

INNER LIST: [1, 2, 3]

position: 1

counter: 0

position: 1

counter: 1 //we can see the counter has been increased in a newly implemented else
statement... This will ensure that it always reaches the correct index location in
List<Integer>

EVER REACH
CURRENT LIST: [2]

1position: 1 counter: 1 //at this pointin time, we expected the counter to be set again
to 0. Otherwise position will evaluate as counter... And it will automatically pick index 0
again.

TEST CASE 3: Executing the code again taken into consideration
the above changes

-------- Commencing transposing at index: 0



IS IT HERE AFTER BREAK

INNER LIST: [1, 2, 3]

position: 0

counter: 0

EVER REACH

CURRENT LIST: [1]

1position: 0 counter: 0

HERE AFTER BREAK

IS IT HERE AFTER BREAK

INNER LIST: [4, 5, 6]

position: 0

counter: 0

EVER REACH

CURRENT LIST: [1, 4]

1position: 0 counter: 0

HERE AFTER BREAK

IS IT HERE AFTER BREAK

INNER LIST: [7, 8, 9]

position: 0

counter: 0

EVER REACH

CURRENTLIST: [1, 4, 7] //THIS|IS CORRECT
1position: 0 counter: 0

HERE AFTER BREAK

CURRENT TRANSFORMATION: [[1, 4, 71]
-------- Commencing transposing at index: 1
IS IT HERE AFTER BREAK

INNER LIST: [1, 2, 3]



position: 1

counter: 0

position: 1

counter: 1

EVER REACH

CURRENT LIST: [2]
1position: 1 counter: 1
HERE AFTER BREAK

IS IT HERE AFTER BREAK
INNER LIST: [4, 5, 6]
position: 1

counter: 0

position: 1

counter: 1

EVER REACH

CURRENT LIST: [2, 5]
1position: 1 counter: 1
HERE AFTER BREAK

IS IT HERE AFTER BREAK
INNER LIST: [7, 8, 9]
position: 1

counter: 0

position: 1

counter: 1

EVER REACH

CURRENT LIST: [2, 5, 8] //THIS IS CORRECT
1position: 1 counter: 1

HERE AFTER BREAK



CURRENT TRANSFORMATION: [[2, 5, 8], [2, 5, 8]] //Butthisisthe first area thatis
surprising since it has written the same List<Integer> twice and overwritten previous

———————— Commencing transposing at index: 2
IS IT HERE AFTER BREAK
INNER LIST: [1, 2, 3]
position: 2

counter: 0

position: 2

counter: 1

position: 2

counter: 2

EVER REACH

CURRENT LIST: [3]
1position: 2 counter: 2
HERE AFTER BREAK

IS IT HERE AFTER BREAK
INNER LIST: [4, 5, 6]
position: 2

counter: 0

position: 2

counter: 1

position: 2

counter: 2

EVER REACH

CURRENT LIST: [3, 6]
1position: 2 counter: 2
HERE AFTER BREAK

IS IT HERE AFTER BREAK



INNER LIST: [7, 8, 9]
position: 2

counter: 0

position: 2

counter: 1

position: 2

counter: 2

EVER REACH
CURRENT LIST: [3, 6,9] //THIS IS CORRECT
1position: 2 counter: 2
HERE AFTER BREAK

CURRENT TRANSFORMATION: [[3, 6, 9], [3, 6, 9], [3, 6, 91]
//But this is the first area that is surprising since it has written the same List<Integer>
three times and overwritten previous

| am fairly close to the solution now

INNER LIST: [7, 8, 9]

position: 0

counter: 0

EVER REACH

CURRENT LIST: [1, 4, 7]

1position: 0 counter: O

HERE AFTER BREAK

2CURRENT TRANSFORMED MATRIX: []

NEWLY TRANSFORMATION: [[1, 4, 7]]
Commencing transposing at index: 1

1CURRENT TRANSFORMED MATRIX: [[]1]

IS IT HERE AFTER BREAK

INNER LIST: [1, 2, 3] It can be seen that by time it

reaches the next iteration of the

position: 1 most outer for loop, it has lost

the value in finalMatrix.
counter: 0

position: 1
counter: 1
EVER REACH




Commencing transposing at index: 0

2CURRENT TRANSFORMED MATRIX: []
NEWLY TRANSFORMATION: [[1., 4., 7]]

Commencing transposing at index: 1

counter: 0 It is first time code has entered this

position: 1 section since it has finished
counter: 1 transposing at index 0 above

EVER REACH

CURRENT LIST: [2, 5, 8]

1position: 1 counter: 1

HERE AFTER BREAK

2CURRENT TRANSFORMED MATRIX: [[2, 5, 8]]

NEWLY TRANSFORMATION: [[2, 5, 8], [2, 5, 8]]
Commencing transposing at index: 2

There seems to be an error in the IDE. There is absolutely no possibility the finalMatrix
can be overwritten. | can attempt to declare it as class level, although it logically makes
no sense since all logic is local to the method

TEST CASE 4: Attempting to change the finalMatrix to class level
and also attempting to change it to static

import java.util.*;
public class Solution {

static List<List<Integer>> finalMatrix = new Itis now class level
_ . . ~2g variable but
Arr ayL15t<L15t<Integer>>-..,_ ), outcomes are still

the same

public static List<List<Integer>> transposeMatrix
(List<List<Integer>> matrix) [

List<Integer> 11 = new ArraylList<Integer>




