
I have now managed to reconstruct the code but this time using my knowledge a bit
more better of the List and for loop structures.
I have executed the code and this is the output:

TEST CASE 1: RUNNING THE REDESIGNED CODE

There are several positive aspects. The List<Integer> are populated with correct
number elements. Also the first List<Integer> is correct.
BUT clearly the area that requires addressing is that it has not progressed onto next
index location for matrix.get(k).

I will simply analyse the debugging information as per usual:

Output (for Debugging)
--------Commencing transposing at index: 0
INNER LIST: [1, 2, 3] //This is correct
position: 0 //This is correct
counter: 0 //This is correct
EVER REACH
CURRENT LIST: [1]
PERFORMING BREAK
INNER LIST: [4, 5, 6] //This is correct
position: 1 //This has surprised me, I expected that position remained same, and
counter would have started from 0… Although it functions in order to populate the first
transposed List<Integer> the logic is not as expected

counter: 1
EVER REACH
CURRENT LIST: [1, 4]
PERFORMING BREAK
INNER LIST: [7, 8, 9]
position: 2 counter: 2
EVER REACH
CURRENT LIST: [1, 4, 7]
PERFORMING BREAK
IS IT HERE AFTER BREAK
CURRENT TRANSFORMATION: [[1, 4, 7]] //this is correct
--------Commencing transposing at index: 1
//this whole section performs a repeat of the above
INNER LIST: [1, 2, 3]
position: 1 counter: 1
EVER REACH
CURRENT LIST: [1]
PERFORMING BREAK
INNER LIST: [4, 5, 6]
position: 2 counter: 2
EVER REACH
CURRENT LIST: [1, 4]
PERFORMING BREAK
INNER LIST: [7, 8, 9]
position: 3 counter: 3
EVER REACH
CURRENT LIST: [1, 4, 7]
PERFORMING BREAK
IS IT HERE AFTER BREAK
CURRENT TRANSFORMATION: [[1, 4, 7], [1, 4, 7]]
--------Commencing transposing at index: 1
//this whole section performs a repeat of the above

INNER LIST: [1, 2, 3]
position: 1 counter: 1
EVER REACH
CURRENT LIST: [1]
PERFORMING BREAK
INNER LIST: [4, 5, 6]
position: 2 counter: 2
EVER REACH CURRENT LIST: [1, 4]

PERFORMING BREAK
INNER LIST: [7, 8, 9]
position: 3 counter:
3 EVER REACH
CURRENT LIST: [1, 4, 7]
PERFORMING BREAK
IS IT HERE AFTER BREAK CURRENT TRANSFORMATION: [[1, 4, 7], [1, 4, 7], [1, 4, 7]]
//hence this is complete repeat transposition for each column and row. It has only
action first index!

TEST CASE 2: Tidied up some of the messages above, notably
identifying the correct location of code upon performing a
break…..

--------Commencing transposing at index: 0

IS IT HERE AFTER BREAK

INNER LIST: [1, 2, 3]

position: 0

counter: 0

EVER REACH

CURRENT LIST: [1]

1position: 0 counter: 0

HERE AFTER BREAK

IS IT HERE AFTER BREAK

INNER LIST: [4, 5, 6]

position: 0

counter: 0

EVER REACH

CURRENT LIST: [1, 4]

1position: 0 counter: 0

HERE AFTER BREAK

IS IT HERE AFTER BREAK

INNER LIST: [7, 8, 9]

position: 0

counter: 0

EVER REACH

CURRENT LIST: [1, 4, 7]

1position: 0 counter: 0

HERE AFTER BREAK

CURRENT TRANSFORMATION: [[1, 4, 7]]
//It is perfectly fine up to here

--------Commencing transposing at index: 1 //this is correct message

IS IT HERE AFTER BREAK

INNER LIST: [1, 2, 3]

position: 1

counter: 0

position: 1

counter: 1 //we can see the counter has been increased in a newly implemented else
statement… This will ensure that it always reaches the correct index location in
List<Integer>

EVER REACH

CURRENT LIST: [2]

1position: 1 counter: 1 //at this point in time, we expected the counter to be set again
to 0. Otherwise position will evaluate as counter… And it will automatically pick index 0
again.

TEST CASE 3: Executing the code again taken into consideration
the above changes

--------Commencing transposing at index: 0

IS IT HERE AFTER BREAK

INNER LIST: [1, 2, 3]

position: 0

counter: 0

EVER REACH

CURRENT LIST: [1]

1position: 0 counter: 0

HERE AFTER BREAK

IS IT HERE AFTER BREAK

INNER LIST: [4, 5, 6]

position: 0

counter: 0

EVER REACH

CURRENT LIST: [1, 4]

1position: 0 counter: 0

HERE AFTER BREAK

IS IT HERE AFTER BREAK

INNER LIST: [7, 8, 9]

position: 0

counter: 0

EVER REACH

CURRENT LIST: [1, 4, 7] //THIS IS CORRECT

1position: 0 counter: 0

HERE AFTER BREAK

CURRENT TRANSFORMATION: [[1, 4, 7]]

--------Commencing transposing at index: 1

IS IT HERE AFTER BREAK

INNER LIST: [1, 2, 3]

position: 1

counter: 0

position: 1

counter: 1

EVER REACH

CURRENT LIST: [2]

1position: 1 counter: 1

HERE AFTER BREAK

IS IT HERE AFTER BREAK

INNER LIST: [4, 5, 6]

position: 1

counter: 0

position: 1

counter: 1

EVER REACH

CURRENT LIST: [2, 5]

1position: 1 counter: 1

HERE AFTER BREAK

IS IT HERE AFTER BREAK

INNER LIST: [7, 8, 9]

position: 1

counter: 0

position: 1

counter: 1

EVER REACH

CURRENT LIST: [2, 5, 8] //THIS IS CORRECT

1position: 1 counter: 1

HERE AFTER BREAK

CURRENT TRANSFORMATION: [[2, 5, 8], [2, 5, 8]] //But this is the first area that is
surprising since it has written the same List<Integer> twice and overwritten previous

--------Commencing transposing at index: 2

IS IT HERE AFTER BREAK

INNER LIST: [1, 2, 3]

position: 2

counter: 0

position: 2

counter: 1

position: 2

counter: 2

EVER REACH

CURRENT LIST: [3]

1position: 2 counter: 2

HERE AFTER BREAK

IS IT HERE AFTER BREAK

INNER LIST: [4, 5, 6]

position: 2

counter: 0

position: 2

counter: 1

position: 2

counter: 2

EVER REACH

CURRENT LIST: [3, 6]

1position: 2 counter: 2

HERE AFTER BREAK

IS IT HERE AFTER BREAK

INNER LIST: [7, 8, 9]

position: 2

counter: 0

position: 2

counter: 1

position: 2

counter: 2

EVER REACH

CURRENT LIST: [3, 6, 9] //THIS IS CORRECT

1position: 2 counter: 2

HERE AFTER BREAK

CURRENT TRANSFORMATION: [[3, 6, 9], [3, 6, 9], [3, 6, 9]]
//But this is the first area that is surprising since it has written the same List<Integer>
three times and overwritten previous

I am fairly close to the solution now

There seems to be an error in the IDE. There is absolutely no possibility the finalMatrix
can be overwritten. I can attempt to declare it as class level, although it logically makes
no sense since all logic is local to the method

TEST CASE 4: Attempting to change the finalMatrix to class level
and also attempting to change it to static

