TEST SCENARIO 1

Verified statistics in Microsoft Word

This45 is an2 example of a short essay87766666666666666666 and it will8 be99 formatted as
per instructions amit amlani ofdsf3224 434343 22233

Word Count ? X Word Count ? X Word Count ? X

Statistics: . Statistics: S Statistics: I
Pages : 1 Pages e 1 Pages ___' E i 1
Words 21 Words 15 Waords 6
Characters (n? spaces) 121 s | Characters (no spaces) 79 Characters (no spaces) 42
Characters (with spaces) 4 acters (with spaces) Characters (with spaces) 47
Paragraphs 0 Paragraphs 0
Lines 2 Lines 1

Include textboxes, footnotes and endnotes Include textbaxes, footnotes and endnotes

11=00+5 7 i VA _AL P
S Z1=13+47 £1=10%0
—_—

This is the essay:
This45 is an2 example of a short es 56 66 a it wills formatted as per instructions amit amlani ofdsf3224 434343

22233

Approximate number of lines within constraints:
Character line limit: 80

Word length (characters): 1 - 15

EEAnglysisHE
The following word has incorrect character: This45s

The following word has incorrect character: an2

Word is longer than 15 characters: essay87766666666666666666 he word Word count: 21

The following word has incorrect character: will8 N e Character count (with spaces) Word count: 141

The following word has incorrect character: be99 ch s ut spaces) Word count: 121
The following word has incorrect character: ofdsf3224 Word Count
The following word has incorrect character: 434343 Statistics:

The following word has incorrect character: 22233 Pages

Words
Characters (no spaces)

Characters (with spaces)
Character count (without spaces) Word count: 121 Paragraphs

Word count: 21

Character count (with spaces) Word count: 141

Lines
This45 is an2 example of a short and it will8 be99 formatted as per

instructions amit amlani ofdsf3224 434343 22233 [incluge textboxes, footnotes and endnotes

H Close i

** Process exited - Return Code: @ **

/*
Online Java - IDE, Code Editor, Compiler

Online Java is a quick and easy tool that helps you to build, compile, test your programs
online.

*/
import java.util.*;

public class Main

{

public static void main(String[] args) {
System.out.printIn("Welcome to Online IDE!! Happy Coding :)");

wordProcessor(100, 80, "This45 is an2 example of a short essay87766666666666666666
and it will8 be99 formatted as per instructions amit amlani ofdsf3224 434343 22233");

}

//Parameter 1 is word limit
//Parameter 2 is character line limit
//Parameter 3 is essay

public static void wordProcessor(int wordLimit, int characterLinelLimit, String essay)

{

// This example should not need a StringBuffer or equivalent since there will be no
//requirement to modify existing String

StringTokenizer st = new StringTokenizer (essay);
int count=0; // word count

String temp="";
String convertedTokenString="";

String beforeAddingWord;
Boolean incorrectWordLength=false;
Boolean acceptableCharacter=false;

int processedCharacters=0;
int lineCount=0;

int numberLines;

int essayLine=0;

int minWordLength=1;

int maxWordLength=15;

System.out.printin("\nThis is the essay: \n" + essay);

double approxLineCount = Math.ceil(((double)essay.length()/characterLineLimit));
lineCount = (int) approxLineCount;

System.out.printin("\nApproximate number of lines within constraints: " + lineCount +
"\n" + "Character line limit: " + characterLineLimit + "\n" + "Word length (characters): " +
minWordLength+ " - " + maxWordLength);

System.out.printin("\n***Analysis***");

StringBuffer sb = new StringBuffer();

String [] finalEssay = new String[lineCount]; // there is problem here in determing exact
//number of line for array

// it is going to be based on length essay chars / line limit.

// although spaces are not relevant to line length as per specifications.

// can potentially use recursion here to count number of spaces.... or complete entire
//exercise

// it was attempted to declare this array later on in the code once exact number lines
//was determined,

// however it was local to the hasMoreTokens(), so not possible to reach it further in
//execution

// int lineCount over compensates which is better since it will prevent outbound
//exception...

Stringloiner sj = new Stringloiner(" ");

//essay will be checked for valid characters

char [] lowerCase = new
char[]{'a','b','c",'d",'¢",'f","g",'h","i","j",'k","l',)'m",'n",'d","p","q",'r",'s",'t",'u’,'v','W",'x",'y",'2'};

char [] upperCase = new
char[l{'A','C','c','D",'E",'F",'&",'"H","l",')",'K",'L",'™",'N",'0",'P",'Q’,'R",'S",' T, 'U", 'V, "W, X, 'Y, ' 2

while (st.hasMoreTokens())

{

temp=st.nextToken();

convertedTokenString=temp.toString(); // it will convert token to string and keep
//track of character count with other tokens
processedCharacters = processedCharacters + convertedTokenString.length();

incorrectWordLength=false;

if (temp.length()<minWordLength || temp.length()>maxWordLength) //if word in
//accepted limits

{

System.out.printin("Word is longer than 15 characters: " + temp);
incorrectWordLength=true;

}

count++; //keeps count words and informs end user if exceeded

if (count>wordLimit)

{
System.out.printIn("******ESSAY EXCEEDED " + wordLimit + "***");

if (lincorrectWordLength) // if the word is not wrong length
{

for (int i=0; i<convertedTokenString.length();i++)

{

acceptableCharacter=false;

// if there is any instance of essay containing non alphabetical char, flag will be set
for (int j=0;j<lowerCase.length;j++)
{

if (convertedTokenString.charAt(i)==lowerCase[j] | |

convertedTokenString.charAt(i)==upperCaselj])
{
acceptableCharacter=true;

}

}

//End user informed of incorrect word
if (lacceptableCharacter)
{
System.out.printIn("The following word has incorrect character: " +
convertedTokenString);
break; // break statement is required to prevent looping of repeat message for
// number occurrences of the character

// it keeps the existing stringjoiner before adding the token retrieved.

beforeAddingWord = sj.toString();

// However the line limit should not be constrained by number existing spaces
// For 3 words there are two spaces in stringjoiner, so for count words there are
(count -1) spaces

if ((beforeAddingWord.length() + convertedTokenString.length() + (count-1))
<=characterLinelLimit)

{

sj.add(convertedTokenString); // the token is added to same line

// this BELOW is critical line since once it finishes processing ALL tokens,

// it will not have opportunity to process hasMoreTokens. Hence it will not be able
// to write the final line into the finalEssay...

// This will ensure content is written and this string would meet the constraints also.

while (Ist.hasMoreTokens()) // if there are no more tokens after the one process

finalEssay[essayLine] = sj.toString();
break;

else

{
// if the character count will exceed the limit, it will have not processed if statement
// it will write the essayline into finalEssay array.
finalEssay[essayLine] = sj.toString();

// overwriting existing instance of the stringjoiner
sj= new Stringloiner(" ");

// this token will start a new line...
sj.add(convertedTokenString);

//incremented the essayLine in order to store Stringloiner in next position.
essaylLine++;

}

System.out.printIn("\nWord count: " + count+"\n");
System.out.printIn("\nCharacter count (with spaces) Word count: " +
(processedCharacters+(count-1)));

System.out.printIn("\nCharacter count (without spaces) Word count: " +
(processedCharacters)+"\n");

for (String s: finalEssay)
{

System.out.printin(s);

