
I have seen my first error here in a complex scenario. It shows how much the code has
been evolved from Programiz version:

Unfortunately the error has persisted, so I have taken opportunity to open up this area
further and also display output of variables….

I have applied this same logic across all the three loops in my code that deals with this
scenario..

So far the code has functioned correctly.

 but I need to examine from the perspective of descending…

So I will create a scenario as follows:

[7,7], [7,4], [3,4] and see how the code behaves….

As to whether same change is required…

TEST CASE: Adapting the code with changes described (in every relevant section) as
above and trying

[7,7], [7,4], [3,4]

I will now run all my test cases again to see the impact since it is an extremely area of
the code modified…

For some reason, the following is now passing through as descending…

So it shows that performing the following operation has had an issue….
But I clearly know from all my coding a lot of the code is reflective…
And this can never be the root cause.

So I have opened the code up again:

Please zoom in, there is currently a shortfall in my logic:

I am now trying the test cases again and hopefully they should pass through correct
area…

TEST CASE:

TEST CASE:

I now feel I am largely on right track.. I need to replicate the underlined red code in all
sections of my code in which it makes decision ascending and descending….

I had to be extremely careful since we know the some areas of code reference
startInterval and endInterval, other areas reference startIntervalSecondRange,
endIntervalSecondRange.

I also notice one stray variable during my testing… I already reached so many
ambiguous ones, so if there is an opportunity I will phase out. But for now, it serves just
sufficient logic to leave it aside..

TEST CASE:

It has now passed…

THIS IS OBJECT: [2, 2] Counter: 1

THIS IS OBJECT: [2, 7] Counter: 2

5Added into Inner List: [2, 2]

23Removed last item from innerList: [2, 2]

6Added into Inner List: [2, 7]A

*****THE INNERLIST: [[2, 7]A]

THIS IS OBJECT: [4, 7] Counter: 3

start interval first range:4

2end interval first range:7

2end new Interval :7

Last item inner list: [2, 7]A

1Removed last item from innerList: [2, 7]A

3Added into Inner List: [2, 7]A

This is innerlist: [[2, 7]A]

THIS IS OBJECT: [2, 2] Counter: 4

start interval first range:2

2end interval first range:2

2end new Interval :7

Last item inner list: [2, 7]A

1Removed last item from innerList: [2, 7]A

3Added into Inner List: [2, 2]

This is innerlist: [[2, 2]]

THIS IS OBJECT: [2, 7] Counter: 5

start interval first range:2

2end interval first range:7

2end new Interval :2

Last item inner list: [2, 2]

1Removed last item from innerList: [2, 2]

3Added into Inner List: [2, 7]A

This is innerlist: [[2, 7]A]

THIS IS OBJECT: [4, 7] Counter: 6

start interval first range:4

2end interval first range:7

2end new Interval :7

Last item inner list: [2, 7]A

1Removed last item from innerList: [2, 7]A

3Added into Inner List: [2, 7]A

This is innerlist: [[2, 7]A]

Final outer list: [[[2, 7]A]]

** Process exited - Return Code: 0 **

I am now going to go through all my test cases… Since the above passed, I have lots
more confidence.. I will not record my findings anywhere, it will be visual analysis.

However more important is trying the exact test case at top of this document…

TEST CASE: FAIL

We can see that it has kept separate entry for [3,3] and when incoming [2,9] has arrived
it has merged them…

But we can see that [3,3] should have remained inside [4,7].

This is logic that I have not completed at all..
But I know looking at Page 1 of this document, it was the secondary area that required
investigation…

I will find the area of code which is 2Added and aim to resolve this..
I need to understand this better.

It has to perform the insertion of [X,X] if X is greater than 7.
Otherwise it would naturally fall into [2,7]

Fortunately this occurrence is in the else statement, so much easier to anticipate

I am hoping I do not need to reflect this logic elsewhere…
The only way to be sure if perform a new fresh test case as follows: [2,7], [3,3]. I do not
expect an issue because it is in different section of code where the counter <=2 and
managed.

I can examine this later once I have retested:

TEST CASE: Re-testing the original one in this documentation

TEST CASE:

In practice, this is incorrect since it should embed within [2,7]
So I will just follow the logic around into 4Added section

This was existing code in the section:

Again concepts are very similar, but need to be careful and perform a write where into
list if possible, since can see there is nothing in there at moment….

I do not believe I need the repeat code in here at all. It is in a good place in the else
section

It has to perform the insertion of [X,X] if X is greater than 7.
Otherwise it would naturally fall into [2,7]

TEST CASE: Repeating same one as above..

I have now checked all points in my code where I perform innerList.add and seem
content that all have received correct remediation…

I have one concern in that in lots of my loops, I performed equality checks on String as
oppose to performing Integer.valueOf()… Of course Java informs me of > or <
But there are several with !=…….
I am going to cast all of the Strings and hopefully run through all my test cases again
informally…

