
 ************ OUTPUT ************************ 

 

 

 



 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 



// *** CODE ** 
/* 

Online Java - IDE, Code Editor, Compiler 

Online Java is a quick and easy tool that helps you to build, compile, test your programs 

online. 

*/ 

// This has been created to ensure I can utilize any random functions more efficiently. 

// It is a creation of the NcR combinations calculator. 

// It has used techniques I learnt including recursion and also memoization to speed up 
execution. 

// I will incorporate this into Java applications I created previously.. 

 

 

//TEST CASES 

//r=2  n=5   //PASS 

//r=5  n=5   //PASS 

//r=1  n=4   //PASS 

//r=0  n=3   //PASS 

//r=0   n=0   PASS 

 

// now going to flip the above 

//r=5  n=2   //PASS 

//r=5  n=5   //PASS     

//r=4  n=1   //PASS   

//r=3  n=0   //PASS   

 

//test to make numerator less than r 

// n = 4     r=3  //PASS 

 

import java.math.*; 

import java.util.*; 



 

public class Combination 

{ 

    public static void main(String[] args)  

    { 

        System.out.println("Welcome to Online IDE!! Happy Coding :)"); 

        int originalNumber=5; 

        int n=originalNumber; 

        int r =5; 

        Map <Integer, Long> m = new HashMap<>(); 

        System.out.println("***COMBINATIONS***"); 

        System.out.println("C(n,r) = n! / (r!(n−r)!)"); 

        System.out.println("C(" + n+","+r+") = " + n+"!" + " / " + "("+r+"!"+"("+n+"-"+r+")!)"); 

        System.out.println(Combinations (n,r,originalNumber, m)); 

    } 

 

public static long Combinations (int n, int r, int originalNumber, Map factorialResults) 

{ 

    // n are objects 

    // r is sample 

    /* 

    ***CALCULATION*** 

    P(n,r) = n! / (r!(n−r)!) 

    */ 

    long result=0; 

    int denominator1; 

    int denominator2; 

    int zero=0;    // this will be used to create entry in Map for 0! 

    long zeroFactorial = 1;   //0! equals 1 

     

     



   //this is example scenario   C(n,r)  = C(2,5) 

    if (r>originalNumber|| r<0) 

    { 

        System.out.println("please enter n ≥ r ≥ 0"); 

        System.exit(0); 

        return 0; 

    } 

 

    // this will ensure that all factorials as low as 1! are processed 

    //reason for this is since   C^R(n,r) for instance C^R(0,3) 

    // This will become issue since numerator is calculated as follows: 

    //result = (n* (Combinations (n-1, r,originalNumber, factorialResults))); // this completes 
factorial for numerator 

    // it can be seen that Java will not be content with 0 * another number..... 

    // As an offset, since the denominator relies on mapped values for numerator, there will be no 
entry in the map for 

    //0!.   The only way to overcome this is to put an entry manually for 0! = 1... 

     

    if (n>=1) 

    { 

        // EXAMPLE 

        // P (5,6) = 6* 5* 4 * 3 * 2 * 1 / 6! (6-5)! = 720 / (5! * 1!) = 120 / 5*4*3*2*1 * 1 = 720 / 120 = 6 

         

        result = (n* (Combinations (n-1, r,originalNumber, factorialResults))); // this completes 
factorial for numerator 

         

        factorialResults.put(n,result); //result stored in the Map 

        //System.out.println("getting result back out numerator " + n+": " + factorialResults.get(n)); 

         

        if (n==originalNumber) // this will occur once 

        { 

            denominator1 = originalNumber-r; 



            // originalNumber required since n has reduced as part of the recursive calls 

            denominator2 = r; // r sample size has not changed 

            // this is using the Java Memoization technique to ensure the factorial outcome is not 
calculated again, to save program cycles. 

            // since the returns are done in reverse order.... n = 1 is processed first and n=6 last... 

            // Hence in practice there will be entry in Map for all factorials, ready for the denominator.. 

             

             // this is where it currently fails for cases such as  C^R  (5,5), (3,0) 

            //reason is since it would have not created an entry for 0! at any point in time 

            //entry being created now 

             

            factorialResults.put(zero,zeroFactorial);    //0!  is equal to 1 

             

            //System.out.println("den1:" + denominator1); 

            //System.out.println("den2:" + denominator2); 

             

            if (factorialResults.containsKey(denominator1) && 
factorialResults.containsKey(denominator2)) 

            { 

                //System.out.println("here"); 

                //System.out.println("This is exact value of factorial " + (denominator1) + " : " + 
factorialResults.get(denominator1)); 

                //System.out.println("This is exact value of factorial " + (denominator2) + " : " + 
factorialResults.get(denominator2)); 

                 

                 long returnValue = result /  ((long)factorialResults.get(denominator1) * 
(long)factorialResults.get(denominator2)); 

                 return returnValue; 

            } 

        } 

        return result; 

    } 

    return 1; // it will reach here when this condition is not met (n>=1) 



} 

} 


