kkhkkkkikkhkkkkkkk OUTPUT kkhkkhkkhkkhkkhkkhkhkhkkhkkkkhkkkhkkikkikikikhkkk

MNote: Combination.java uses unchecked or unsafe operations.
Mote: Recompile with -Xlint:unche

Welcome to Online IDE!! Happy Coding :

#EECOMBINATIONS*##

C(n,r) =n! / (r!(n-r)!)

c(5,2) = 5! / (21(5-2)1)

16

#% Pprocess exited - Return Code: & *#%

MNote: Combination.java uses unchecked or unsafe operations.
Mote: Recompile with -Xlint:unchecked for details.

Welcome to Online IDE!! Happy Coding :)

#EECOMBINATIONS*##

C(n,r) =n! / (r!(n-r)!)

c(4,1) = 4! 7 (1'(4-1)1)

4

#% Pprocess exited - Return Code: & *#%

MNote: Combination.java uses unchecked or unsafe operations.

Mote: Recompile with -Xlint:unchecked for details.
:)

Welcome to Online IDE!! Happy Coding
#EECOMBINATIONS*##

C(n,r) =n! / (r!(n-r)!)

c(2,5) = 2! / (5!(2-5)1)

please enter n 2 r 2 8

#% Pprocess exited - Return Code: & *#%

Note: Combination.java uses unchecked or unsafe operations.

Note: ed for details.
)

Welcome to Online IDE!! Happy Coding
FEECOMBINATIONS*#*

C(n,r) = n! / (r!'(n-r)!)

C(o,0) e! / (e!(e-8)!)

1

#% Process exited - Return Code: & #*

[/ *** CODE **

/%

Online Java - IDE, Code Editor, Compiler

Online Java is a quick and easy tool that helps you to build, compile, test your programs
online.

*/

// This has been created to ensure | can utilize any random functions more efficiently.

// It is a creation of the NcR combinations calculator.

// It has used techniques | learnt including recursion and also memoization to speed up
execution.

// M will incorporate this into Java applications | created previously..

/ITEST CASES

//r=2 n=5 //PASS
//r=5 n=5 //PASS
/Ir=1 n=4 //PASS
//r=0 n=3 //PASS

//Ir=0 n=0 PASS

// now going to flip the above
//r=5 n=2 //PASS
//r=5 n=5 //PASS
//r=4 n=1 //PASS

//r=3 n=0 //PASS

//test to make numerator less than r

/In=4 =3 //IPASS

import java.math?*;

import java.util*;

public class Combination
{
public static void main(String[] args)
{
System.out.println("Welcome to Online IDE!! Happy Coding :)");
int originalNumber=5;
int n=originalNumber;
intr=5;
Map <Integer, Long> m = new HashMap<>();
System.out.printin("***COMBINATIONS***");
System.out.printin("C(n,r) =n!/ (r/(n—-rnH)");
System.out.printin("C(" + n+""+r+") ="+ n+"" + " /" + "("+r+"1"+"("+n+"-"+r+")1)");

System.out.println(Combinations (n,r,originalNumber, m));

public static long Combinations (int n, intr, int originalNumber, Map factorialResults)
{

// n are objects

// ris sample

/%

CALCULATION

P(n,r) =n!/(rl(n-r)!)

*/

long result=0;

int denominator1;

int denominator?2;

int zero=0; //this will be used to create entry in Map for 0!

long zeroFactorial=1; //0! equals 1

//this is example scenario C(n,r) = C(2,5)

if (r>originalNumber|| r<0)

{
System.out.println("please entern=r = 0");
System.exit(0);

return O;

// this will ensure that all factorials as low as 1! are processed
//reason for this is since C”R(n,r) for instance C"*R(0,3)
// This will become issue since numerator is calculated as follows:

//result = (n* (Combinations (n-1, r,originalNumber, factorialResults))); // this completes
factorial for numerator
// it can be seen that Java will not be content with 0 * another number

/1 As an offset, since the denominator relies on mapped values for numerator, there will be no
entry in the map for

//0!. The only way to overcome this is to put an entry manually for 0! = 1...

if (n>=1)

{
// EXAMPLE

//P(5,6)=6*5*4*3*2*1/6!(6-5)!=720/(5!*1!)=120/5*4*3*2*1*1=720/120=6

result = (n* (Combinations (n-1, r,originalNumber, factorialResults))); // this completes
factorial for numerator

factorialResults.put(n,result); //result stored in the Map

//System.out.println("getting result back out numerator " + n+": " + factorialResults.get(n));

if (n==originalNumber) // this will occur once

{

denominator1 = originalNumber-r;

// originalNumber required since n has reduced as part of the recursive calls
denominator2 =r; // r sample size has not changed

// this is using the Java Memoization technique to ensure the factorial outcome is not
calculated again, to save program cycles.

// since the returns are done in reverse order.... n =1 is processed first and n=6 last...

// Hence in practice there will be entry in Map for all factorials, ready for the denominator..

// this is where it currently fails for cases such as C*R (5,5), (3,0)
//reason is since it would have not created an entry for 0! at any pointin time

//entry being created now

factorialResults.put(zero,zeroFactorial); //0! is equalto 1

//System.out.printin("den1:" + denominator1);

//System.out.printlin("den2:" + denominator2);

if (factorialResults.containsKey(denominator1) &&
factorialResults.containsKey(denominator2))

{
//System.out.println("here");

//System.out.println("This is exact value of factorial " + (denominator1) +": " +
factorialResults.get(denominator1));

//System.out.println("This is exact value of factorial " + (denominator2) + " : " +
factorialResults.get(denominator2));

long returnValue = result / ((long)factorialResults.get(denominator1) *
(long)factorialResults.get(denominator2));

return returnValue;

}

return result;

}

return 1; // it will reach here when this condition is not met (n>=1)

