kkhkkkkikkhkkkkkkk OUTPUT kkhkkhkkhkkhkkhkkhkhkhkkhkkkkhkkkhkkikkikikikhkkk

Note: Permutation.java uses unchecked or unsafe operations.
Mote: Recompile with -Xlint:unchecked for details

Welcome to Online IDE!! Happy Coding :)
#EEPERMUTATIONS **#

P(n,r) = n! / (n—-r)!

P(0,0) = 8! / (0-0)!

1

¥% Process exited - Return Code: @ #¥

Note: Permutation.java uses unchecked or unsafe operations.

Mote: Recompile with -Xlint:unchecked for details.
:)

Welcome to Online IDE!! Happy Coding
#EEPERMUTATIONS*#*

P(n,r) = n! / (n-r)!

P(5,5) = 5! / (5-5)!

120

#% Process exited - Return Code: & #*

Note: Permutation.java uses unchecked or unsafe operations.
Mote: Recompile with -Xlint:unchecked

Welcome to Online IDE!! Happy Coding

#HEPERMUTATIONS*##

P(n,r) = n! / (n-r)!

P(3,5) = 3! / (3-5)!

please enter n 2 r 2 @

#% Ppocess exited - Return Code: @ #*#*

Note: Permutation.java uses unchecked or unsafe operations.
Mote: Recompile with -Xlint:unchecked for details.

Welcome to Online IDE!! Happy Coding :)

#H#EPERMUTATIONS*##

P(n,r) = n! / (n-r)!

P(5,3) = 5! / (5-3)!
60

#% Pprocess exited - Return Code: & *#%

[/ *** CODE **

/*

Online Java - IDE, Code Editor, Compiler

Online Java is a quick and easy tool that helps you to build, compile, test your programs
online.

*/

// This has been created to ensure | can utilize any random functions more efficiently.

// 1t is a creation of the nPr permutation calculator.

// It has used techniques | learnt including recursion and also memoization to speed up
execution.

// N willincorporate this into Java applications | created

//TEST CASES

//r=2 n=5 PASS
//r=5 n=5 PASS
//Ir=1 n=4 PASS
//r=0 n=3 PASS

//Ir=0 n=0 PASS

// now going to flip the above

//Ir=5 n=2 PASS

//r=5 n=5 PASS
//r=4 n=1 PASS

//Ir=3 n=0 PASS

//test to make numerator less than r

/In=4 r=3 PASS

import java.math*;

import java.util.*;

public class Permutation

{
public static void main(String[] args) {
System.out.println("Welcome to Online IDE!! Happy Coding :)");
int originalNumber=4;
int n=originalNumber;
intr=3;
Map <Integer, Long> m = new HashMap<>();
System.out.println("***PERMUTATIONS***");
System.out.println("P(n,r) =n!/ (n—-r)!");
System.out.printin("P(" + n+""+r+") =" + n+"1" + " /" + " ("+n+"-"+r+")1");

System.out.println(Permutations (n,r,originalNumber, m));

public static long Permutations (int n, intr, int originalNumber, Map factorialResults)
{

// n are objects

// ris sample

/%

CALCULATION

P(n,r)=n!/(n-r)!

*/
long result=0;
inttemp;

int denominator;

if (originalNumber<r || r<0)

{
System.out.println("please entern=r=0");
System.exit(0);

return O;

if (n>=1)

// EXAMPLE
//P(5,6)=5*4*3*2*1/(6-5)!=24/2'=24/2*1=24/2=12

result = (n* (Permutations (n-1, r,originalNumber, factorialResults))); // this completes
factorial for numerator

factorialResults.put(n,result); //result stored in the Map

//System.out.println("getting result back out numerator " + n+": " + factorialResults.get(n));

if (n==originalNumber) // this will occur once

{

denominator = originalNumber-r; // originalNumber required since n has reduced as part of
the recursive calls

//System.out.println("This is denominator: " + denominator);

// this is using the Java Memoization technique to ensure the factorial outcome is not
calculated again, to save program execution cycles.

// since the returns are done in reverse order.... n = 1 is processed first and n=6 last...

//Hence in practice there will be entry in Map for all factorials, ready for the denominator..

if (factorialResults.containsKey(denominator))

{

//System.out.println("here");

//System.out.println("This is exact value of factorial denominator " + (denominator) + " : " +
factorialResults.get(denominator));

return result / (long)factorialResults.get(denominator); // this is number permutations

}

return result; // this will be returning already calculating numerator part

}

return 1;//// it should reach here if this is false: (n>=1) }

