0 Daily Coding Problem

Good morning! Here's your coding interview problem for today.
This question was asked by Zillow.

You are given a 2-d matrix where each cell represents number of
coins in that cell. Assuming we start at matrix[e][@] , and can only
move right or down, find the maximum number of coins you can collect
by the bottom right corner.

For example, in this matrix

0311
2004
1531

The most we can collectis0+2+1+5+ 3+ 1 =12 coins.

This is definitely not any more difficult than challenge by Slack.

Itis a case of reducing code in some areas, but also extending it in other
areas.

The alternation in both directions is still valid DOWN => RIGHT =>DOWN and
also RIGHT =>DOWN = RIGHT, since instead of obstacles the grid, it has
coins of different values.

There are other changes, unfortunately it was realised that | had excess code
in the Slack challenge (see below).

| will reflect changes below in both the following methods:
public void movesRight
public void movesDown

It was also later realised that the try and catch was not required since it would only perform this

execution if
if (loutBounds) currentPosX + RIGHTvalue < matrix[0].length (loutcfBounds).
{ Itis very likely | introduced try and catch before | introduced the if{loutBounds), hence it failed in

testing. At end | had double resilience and it is not required.

. . . . | will remove this surplus in coin challenge by Zillow.
for (int i=1; i<=RIGHTvalue; i++) P ge by

{

All the code highlighted in orange would be removed.
Instead of searching for a wall within the RIGHTvalue, it
is interested to ensure that there is actually a path and
collect the coins.

if ((matrix[currentPosY] [cur‘rentPosX+i]-)

//this can be enable for better efficiency, however all conditions

//are set in the code to not process any conditions for remaining moves .
//due to obstructions Following code would be added here:

{/mantains running total
t=numbers.length; ! ‘)
xbr::E- ere-tene totalCoins = totalCoins + matrix[currentPosY]

- [currentPosX+1];

At this peint, it has discovered that whilst moving across, it has

This is now at the point where it has to store the results.

| will try to follow the same technique as Snakes and Ladders in which once it
completed the entire board (in this case the matrix), it would present the
following information. Again it is useful to have it ongoing, in event of memory
issues..

*xAxx kX ANALYSIS OF ALL THE MOVES UNDERTAKEN [Start Position => End Position]******
Minimum Coins so far: 8

Maximum Coins so far: 135

In this section of the code, it would adhere to similar recording of results as Snakes and Ladders. In Snakes and Ladders we were
concerned with minimum maves. If it was a new minimum, it would overwrite the existing valiue. If it was equal to minimum, it would
keep existing records and add a new entry at the end...

For this challenge of total coins, it has to store both the valueSet and also totalCoins

if (currentPosy==(matrix.length-1) && currentPosX==(matrix[e].length-1))

{

successfulFinish=true;
Ssystem.out.println("****#*Successful:

+ valuesset);

completedPaths[count] = (valuesSet + " Subset: " + count + " " + movementPattern);

count++;

In terms of displaying the results mid execution, since it still has to be based
on following methods due to variation in coin values, | am left with an
identical flaw as my previous Slack code.

I will remain adamant to fix this, notably since in an open grid (with no
constraints), there will be more cascaded moves...
This is areminder of the issue that had occurred.

entry=0; entry<valuesSet.length; entry++)

(valuesSet[entry]!="ALREADY PROCESSED")

This would be the point in the Staircase class in which it attempts to
(startToFinish(valuesSet[entry])) check for boolean =true

subsetEntry++}

.out.println(valuesSet[entry] " Subset: " subsetEntry " at cyc

A
L]

This would invoke the startToFinksh method and it would create a new instance of the Direction class

Y
1

startToFinish(valuesSet)
Direction d Direction(valuesSet, matrix);

d.successfulFinish;|

)
In the constructor Direction it woul§ call both scenarios

Direction(valuesSet, [1[] matrix)

.valuesSet=valuesSet;
.matrix=-matrix;|

= ‘N . Both set the boolean for
movesAlternate09wanght Y) - successfulFinish and it will be
movesAlternateRightDown(’); overwritten. So, the value in method will
always be from the last method

SOLUTION

One possible solution has arisen. And unfortunately, since it was not a
technique not used in my coding before, it has taken a while to realise this.
Constructor overloading / changing parameter order in method declaration.
This has created a different method signature. And when the constructor has
been instantiated, it chooses the correct constructor.

| can then separate out the two methods into separate constructors.

Here is how | managed to perform the operation, it required lots of small
changes. But fortunately it functioned, which means | can perform this
challenge knowing that end user will get some results in event that available
memory elapses...

Separate structure for Down => Right => Down.....

entry=0; entry<valuesSet.length; entry++)

(valuesSet[entry]!="ALREADY PROCESSED")
{

There is now a unique method for alternation Down => Right => Down => Right

. . . This would be the point in the Staircase class in which it attempts to check for boolean =true
(startToFinishDownRight(valuesSet[entry])) . N -

{
subsetEntry++;

.out.println{valuesSet[entry] Subset: " subsetEntry at cycle number

This would invoke the startToFinishDownRight method and it would create a new instance of the Direction

startToFinishDownRight(valuesSet)

Direction d Direction(valuesSet, matrix, "DownRight™); Also note the order of the
arguments differ in order to
call correspondng constructor
containing
maoveAlternateDownRight()

d.successfulFinish;

Directfion(valuesSet, [1[] matrix, alternateDownRight)

.valuesSet=valuesSet;

.matrix ma‘tr‘ix; In the constructor Direction it would call OMLY one method
movesAlternateDownRight()

So there is no longer case of value being overwritten

movesAlternateDownRight(); boalean successfulFinish

Separate structure for Right => Down => Right.....

entry=0; entry<valuesSet.length; entry++)

(valuesSet[entry]!="ALREADY PROCESSED")
{

o There is now a unigue method for alternation Right => Down => Right => Down

This would be the point in the Staircase class in which it attempts to check for boolean =true

(startToFinishRightDown(valuesSet[entry]))

subsetEntry++;

.out.println(valuesSet[entry] " Subset:| " subsetEntry " at cycle number

This would invoke the starfToFinishRightDown method and it would create a new instance of the Direction

]

startToFinishRightDown(valuesSet)

Direction d| Direction(valuesSet, "RightDown", matrix);

Lol R el Also note the order of the
arguments differ in order to
call correspondng constructor
containing
moveAlternateRightDown()

Direction(valuesSet, alternateRightDown, [1[] matrix)

.valuesSet=valuesSet;

-matrix=matrix; In the constructor Direction it would call ONLY one method
. movesAlternateRightDown().
movesAlternateRightDown(); Sothere is no longer case of value being overwritten

This will be it, this is all my planning for the coin collecting challenge.
| am officially ready to collection stray coins.

And there is nothing more rewarding than collecting coins in my final matrix
movement challenge.

Perhaps if my skills improve further, | can try to perform multi-directional

movements...

