
*** OUTPUT ************

Note: Combination.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

Welcome to Online IDE!! Happy Coding :)
COMBINATIONS (WITH REPLACEMENT)
C^R(4,4) = (n+r-1)! / r!(n-1)!
C^R(4,4) = 7! / 4!(3)!
35
Combinations: 35 (This will be maximum limit for set size)

Size of list: 4

random number: 2
This is number in list: 76
Size of list: 4
random number: 1
This is number in list: 7

Size of list: 4
random number: 3
This is number in list: 415
Size of list: 4
random number: 0
This is number in list: 10

This will be stored in set: 76741510
set size: 35

Number cycles: 38 // This has finished executed similar cycle to 35
Original list: [10, 7, 76, 415]

RUNTIME ERROR AS BELOW:

This points to following code:

I have also examined the first number in the set that it
processes and there are no characters that would fail to
parse from String to Int. The output below also does not
seem to be the first entry!

/
*** CODE **
//FAILING!!! - COMBINATION WITHOUT REPLACEMENT

/*

Online Java - IDE, Code Editor, Compiler

Online Java is a quick and easy tool that helps you to build, compile, test your programs
online.

*/

// This has been created to ensure I can utilize any random functions more efficiently.

// It is a creation of the combinations with replacement calculator.
// It has used techniques I learnt including recursion and also memoization to speed up

execution.

// I will incorporate this into Java applications I created previously..

import java.math.*;

import java.util.*;

class largestNumber

{

 long combinations;

 int count;
 String temp;

 Set <String> s = new HashSet <>(); // this will store the combinations

 List <Integer> lst = new ArrayList<>(Arrays.asList(10,7,76,415)); // this is list of numbers. In
future, it will be chosen to use other data

 List <Integer> copy = new ArrayList<>(lst); //keeps a copy // this list keeps a copy since
during program execution the top list is modified

 public largestNumber(long combinations)

 {

 this.combinations=combinations;

 int randomNumber; // random number generated

 int numberArray; // value at index of randomNumber in the set

 int counter=0;

 Random rand = new Random(); // generates random number

 System.out.println("Combinations: " + combinations +"\n"); //number combinations
without replacement

 do
 {

 temp=""; // this is used concatenation of value before it is stored in the set....

 counter=0;

 do
 {

 System.out.println("Size of list: " + lst.size()); //size list

 randomNumber = rand.nextInt(lst.size()); //random number between 0 -
(size list-1)

 System.out.println("random number: " + (randomNumber));

 numberArray = lst.get(randomNumber); //gets number from the list

 System.out.println("This is number in list: " + numberArray); //corresponding value
in list

 temp = temp + Integer.toString(numberArray); // concatenating the values

 counter++;

 //lst.remove(randomNumber); // this is important step.. it removes value at this
index from list... enforce combination without replacment

 //System.out.println("value of i: " + i + "\n");

 } while (counter<lst.size()); // it will keep processing while this is true.... while
list is not empty

 s.add(temp); // adding the value to the set.
 System.out.println("This will be stored in set: " + temp);

 System.out.println("set size: " + s.size() +"\n"); //once this has incremented, the set
has grown...

 count++; // this is indication of a cycle.. It is aiming to be close to combinations...

 } while (s.size()<combinations); // this is 1 less due to 0 indexing of the set.

 System.out.println("Number cycles: " + count);

 System.out.println("Original list: " + copy.toString()); //original list outputted to the
screen

 System.out.println("highest is: " + checkMaximum()); // function call to check for
maximum

 }

 public int checkMaximum()
 {

 System.out.println("IN CLASS");

 int highest=0;

 for (String m: s) // checks each string in the set

 {

 //System.out.println(Integer.valueOf(m));

 // StringBuilder sb = new StringBuilder(m); // also tried StringBuilder but this also
failed....

 if (Integer.parseInt(m)>highest) // greater than initial 0.. Strings are converted back
to //integer

 {

 highest=Integer.valueOf(m); // it will store value

 }

 }

 return highest;

 }

}

public class Combination

{

 public static void main(String[] args) {

 System.out.println("Welcome to Online IDE!! Happy Coding :)");

 int originalNumber=5;

 int n=originalNumber;

 int r =6;

 Map <Integer, Long> m = new HashMap<>();

 System.out.println("***COMBINATIONS*** (WITH REPLACEMENT)");

 System.out.println("C^R(" + n+","+r+") = " + "(n+r-1)! / r!(n-1)!");

 System.out.println("C^R(" + n+","+r+") = " + (n+r-1)+ "!" + " / " + r+"!"+"("+(n-1)+")!");

 System.out.println(Combinations (n,r,originalNumber, m));

 largestNumber ln = new largestNumber(Combinations (n,r,originalNumber, m));

 }

 public static long Combinations (int n, int r, int originalNumber, Map factorialResults)

 {

 // n are objects

 // r is sample

 /*
 CALCULATION

 (n+r-1)! / r!(n-1)!

 */

 long result=0;
 int denominator1; //denominator split two parts since there are two factorial
calculations

 int denominator2; //denominator split two parts since there are two factorial
calculations

 int Numerator=n+r-1; // Numerator

 if (Numerator>=1) // this will ensure that all factorials as low as 1! are processed

 {
 //System.out.println("value of n: " + Numerator);

 // EXAMPLE

 // C^R (5,6) = (5+6-1)! / 6! (5-1)! = 3628800 / (6! * 4!) = 3628800 / 720 * 24 =
210

 result = ((n+r-1)* (Combinations (n-1, r,originalNumber, factorialResults))); // this
completes factorial for numerator

 factorialResults.put(Numerator,result); //result stored in the Map

 //factorialResults.put(n-1,result); //result stored in the Map

 //System.out.println("getting result back out: " + (Numerator) + " " +
factorialResults.get(n+r-1));

 if (n==originalNumber) // this will occur once

 {

 denominator1 = r; // r sample size has not changed

 denominator2 = originalNumber-1; // originalNumber required since n has reduced
as part of the recursive calls

 // this is using the Java Memoization technique to ensure the factorial outcome is not
calculated again, to save program cycles.

 // since the returns are done in reverse order.... n = 1 is processed first and n=6 last...
Hence in practice

 // there will be entry in Map for all factorials, ready for the denominator..

 //n+r-1 r=6 n = 3 or 2 or 1 so recursive values going in set are 8! , 7!, 6!
factorial

 // but the put method for the set would recursively call and populate others up to 1!

 if (factorialResults.containsKey(denominator1) &&
factorialResults.containsKey(denominator2))

 {

 //System.out.println("here");

 //System.out.println("This is exact value of factorial " + (denominator1) + " : " +
factorialResults.get(denominator1));

 //System.out.println("This is exact value of factorial " + (denominator2) + " : " +
factorialResults.get(denominator2));

 return result / ((long) factorialResults.get(denominator1) *
(long)factorialResults.get(denominator2));

 }

 }

 return result;

 }

 return 1; // it will reach here only when condition not met (Numerator>=1)

 }

 }

