kkhkkkkikkhkkkkkkk OUTPUT kkhkkhkkhkkhkkhkkhkhkhkkhkkkkhkkkhkkikkikikikhkkk

Note: Combination.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchec

Welcome to Online IDE!! Happy Coding

EXCOMBINATIONS#% (WITH REPLACEMENT)

C*R(n + r) = (n+r-1)! / rl(n-1)!

Cc*R(@,8) = -1! / @!1(-1)!

n and r can not both be equal to zero

#% Ppocess exited - Return Code: @ #*#*

MNote: Combination.java uses unchecked or unsafe operations.

Mote: Recompile with -Xlint:unchecked for details.
:)

Welcome to Online IDE!! Happy Coding
#EXCOMBINATIONS*#% (WITH REPLACEMENT)
C*R(n + r) = (n+r-1)! / rl{n-1)!
C*R(5,2) = 6! / 21(4)!

15

#% Pprocess exited - Return Code: & *#%

MNote: Combination.java uses unchecked or unsafe operations.
Mote: Recompile with -Xlint:unchecked

Welcome to Online IDE!! Happy Coding :

#EXCOMBINATIONS*#% (WITH REPLACEMENT)

C*R(n + r) = (n+r-1)! / rl{n-1)!

C*R(2,5) = 6! / 51(1)!

6

#% Pprocess exited - Return Code: & *#%

Note: Combination.java uses unchecked or unsafe operations.
Mote: Recompile with -Xlint:unchecked for details.

Welcome to Online IDE!! Happy Coding :)

EXCOMBINATIONS#% (WITH REPLACEMENT)

C*R(n + r) = (n+r-1)! / rl(n-1)!

C*R(@,3) = 21 / 31(-1)!

n+r-1 must be > or = to r

#% Ppocess exited - Return Code: @ #*#*

[/ *** CODE **

/%

Online Java - IDE, Code Editor, Compiler

Online Java is a quick and easy tool that helps you to build, compile, test your programs
online.

*/

// This has been created to ensure | can utilize any random functions more efficiently.

// It is a creation of the combinations (with replacement) calculator.

// 1t has used techniques | learnt including recursion and also memoization to speed up
execution.

/! 1 will incorporate this into Java applications | created previously..

//TEST CASES

//r=2 n=5 PASS
//r=5 n=5 PASS
//r=1 n=4 PASS
//r=0 n=3 PASS

//r=0 n=0 PASS

// now going to flip the above
//r=5 n=2 PASS

//Ir=5 n=5 PASS

/lr=4 n=1 PASS

//r=3 n=0 FAIL.... FIXED

//test to make numerator less than r

//n=4 =3 FAIL n+r-1 mustbe>or=tor (FIXED)

import java.math*;

import java.util.*;

public class Combination
{
public static void main(String[] args) {
System.out.println("Welcome to Online IDE!! Happy Coding :)");
int originalNumber=0;
int n=originalNumber;
intr=3;
Map <Integer, Long> m = new HashMap<>();
System.out.printin("***COMBINATIONS*** (WITH REPLACEMENT)");
System.out.printin("C*R(n +r) ="+ "(n+r-1)! / rl(n-1)!");
System.out.printin("C*R(" + n+""+r+") =" + (n+r-1)+ "I" + " /" + r+"I"+"("+(n-1)+")I");
System.out.println(Combinations (n,r,originalNumber, m));
}
public static long Combinations (int n, intr, int originalNumber, Map factorialResults)
{
// n are objects

// ris sample

/*
CALCULATION

(n+r-1)!/ rl(n-1)!

*/

long result=0;

int denominator1; //denominator split two parts since there are two factorial calculations
int denominator2; /denominator split two parts since there are two factorial calculations
int Numerator=n+r-1; // Numerator

int zero=0; //this will be used to create entry in Map for 0!

long zeroFactorial=1; //0! equals 1

/1 if no sample or objects, there are no outcomes...

if (originalNumber==0 && r==0)

{
System.out.println("n and r can not both be equal to zero");
System.exit(0);

return O;

//this situation would occur if nis 0 only and r is any positive number accept O (if statement
above)

//for instance (C*R (n,r)) =(0,3) 0+3-1 =2 2<3

if (originalNumber==0 && originalNumber+r-1<r)
{
System.out.println("n+r-1 must be >or=to r");
System.exit(0);

return O;

if (Numerator>=1)

// this will ensure that all factorials as low as 1! are processed

//reason for this is since C”R(n,r) forinstance C”*R(1,0)

//(n+r-1) = 0

// This does not seem like an issue but since the numerator is calculated as follows:
//result = ((n+r-1)* (Combinations (n-1, r,originalNumber, factorialResults)));

// it can be seen that Java will not be content with 0 * another number.....

// As an offset, since the denominator relies on mapped values for numerator, there will be no
entry in the map for

//0!. The only way to overcome this is to put an entry manually for 0! = 1...

//System.out.println("value of n: " + Numerator);

// EXAMPLE

// C"R (5,6) = (5+6-1)! / 6! (5-1)! = 3628800 / (6! * 4!) = 3628800/ 720 * 24 =210
result = ((n+r-1)* (Combinations (n-1, r,originalNumber, factorialResults))); // this
//lcompletes factorial for numerator

factorialResults.put(Numerator,result); //result stored in the Map
//factorialResults.put(n-1,result); //result stored in the Map

/ISystem.out.println("getting result back out numerator: " + (Numerator) + " " +
factorialResults.get(n+r-1));

if (n==originalNumber) // this will occur once

{
denominator1 =r; // r sample size has not changed
// originalNumber required since n has reduced as part of the recursive calls
denominator2 = originalNumber-1;

// this is using the Java Memoization technique to ensure the factorial outcome is not
calculated again, to save program cycles.

// since the returns are done in reverse order.... n =1 is processed first and n=6 last...
Hence in practice

// there will be entry in Map for all factorials, ready for the denominator..
//n+r-1r=6 n=3 or 2 or 1 so recursive values going in set are 8!, 7!, 6! factorial

// but the put method for the set would recursively call and populate others up to 1!

// this is where it currently fails for cases such as C*R (3,0), (1,0)
//reason is since it would have not created an entry for 0! at any pointin time

//entry being created now

factorialResults.put(zero,zeroFactorial); //0! is equalto 1

//System.out.printin("den1:" + denominator1);

//System.out.printlin("den2:" + denominator2);

if (factorialResults.containsKey(denominator1) &&
factorialResults.containsKey(denominator2))

{
//System.out.println("here");

//System.out.println("This is exact value of factorial denominator part1 " +
(denominator1) + " : " + factorialResults.get(denominator1));

//System.out.println("This is exact value of factorial denominator part2 " +
(denominator2) + " : " + factorialResults.get(denominator2));

long returnValue =result / ((long)factorialResults.get(denominator1) *
(long)factorialResults.get(denominator2));

return returnValue;

}

return result;

return 1; // it will reach here only when condition not met (Numerator>=1)

