| am starting the test cases extremely early since there is significant difficulty in simply
obtaining content out of the matrices (consisting of different dimension matrix)

TEST CASE 1: Creating code to simply output all the matrixes and

also output the numbers within the matrix... FOR ALL the matrix in

the matrices

Input [[[1, 2, 3], [4, 5, 6]], [[7, 81, [9, 101, [11, 12]], [113, 14], [15, 16]]]

//This is the test case

Output (for Debugging)

Matrix: [[1, 2, 3], [4, 5, 6]] //I have clearly obtained the matrix

1 //l have obtained the integers within the matrix

2 //l have obtained the integers within the matrix

3 //1 have obtained the integers within the matrix

4 //l have obtained the integers within the matrix

5 //1 have obtained the integers within the matrix

6 //1 have obtained the integers within the matrix

//Although it is clear that these are part of the same matrix, we can be entirely sure

since in the input, it has introduced]] I have clearly marked this boundary in the input

above for verification.

//all information is correct as per the input
Matrix: [[7, 8], [9, 10], [11, 12]]

7

8

9

10

11

12

//all information is correct as per the input
Matrix: [[13, 14], [15, 16]]

13

14

15

16

num elements: 16

Your Result[] //We know that | have not performed calculations so | expectincorrect
result

Expected Result [[1714, 1836], [4117, 4410]]

If the three matrix are created, it would be represented as such

So | am presented with matrixes as follows. This clearly
varies to that presented in question. It also presents extreme
difficulty since | have very little idea on the principles behind
the formula but it requires MOVING COLUMN ACROSS IN
FIRST MATRIX AND ROW ACROSS IN NEXT. The NUMBER
OF COLUMNS AND ROWS MUST MATCH

A 1,23 =(1x7)+(2x9)+(3x11), 58,64
[4, 5, 6] (1x8)+(2x10)+(3x12), 130 154
(4x7)+(5x9)+(6x11), o
B [7, 8] (4x8)+(5x10)+(6x12)
[9, 10]
[11, 12]
c [13,14]
[15, 16]
=Cx 58,64 75(58;4?}31-;6(4?4{(;;), 1714,1836
. X X
139, 154 (139x13) + (154x15) 4117,4410

(139x14) + (154x16)

I have found it extremely difficult to grasp such a relatively straight forward process. |
had to complete calculations several times not due to data entry, but due to movingin
wrong direction of the matrix.

This is something | need to be extra careful of during testing also since the
multiplications can render huge numbers..... And also | am applying the principles
correctly.

I know that integers are displayed on the screen one at a time. The first point for
completing multiplication would be at number 7.

| could perform necessary calculations as follows...

Butitis also essential | check to see if there is validation in the matrix sizes prior to
multiplication. | suspect Programiz have given valid cases..

We know when

A [1,2, 3] storing value in
(4.5, €] array, we can simply
create a 2d array
B [7. 8] [rowSize][colSize]
[9, 10]
[11,12] =(1x7)+(2x9)+(3x11),
(1x8)+(2x10)+(3x12),
c [13,14] (4x7)+(5x9)+(6x11),
[15, 16] (4x8)+(5x10)+(6x12)
=Cx 58'954 o We need to ensure validation as below in order to create the
139,1

correct storage array:

3 2x3 x 2x2 - X Not possible
Because the number of columns in A (3) doesn't match the number of rows in B (2).

In short:
A size B size Result size Valid?
2x%2 2x2 2x2 =
2x3 3x2 2x2 =
3x2 2x4 3x4 =
2x3 2x2 — X

This creates a primary challenge in development. If | decide to perform multiplications
as soon as 7 arrives, | would continue successfully up to number 12..

But based on research, we can see that if there is another row below 12, it would
invalidate the multiplication

[1,2,3]
[4,5, 6]

[7, 8]

[9, 10]

[11,12]

[13, 14] //There are four rows compared to three columns above

I will continue to develop my code and perhaps use a try and catch technique to handle
situation if situation occurs. Otherwise | would require repeat loops again before main
code execution.

TEST CASE 2: Create point in code when the first digit of the
second matrix is outputted to the screen

I simply created following core logic

- (List<Integer> ee: matrix)

for (int k: ee)
{

1f (matrixNumber<counter && hasStartMatrix

System.out.println("This 1is first integer in

next matrix: " + k);
hasStartMatrix=false;

numElementsInList++;
System.out.println(k);

| can now start the main multiplications.

However when visualising the screen output again, it makes me suggest that | should
have really been looking at next matrix as soon as the first appeared on the screen and
attempted calculations. This is in conjunction with reducing intermediate variables.

Output (for Debugging)

Matrix: [[1, 2, 31, [4, 5, 6]]

But now we need to consider if we should be storing
these values elsewhere,

or if we should have actually forced another loop in
this area of code so that we can perform the
multiplication with 7.

It seems | need to potentially create a level of loop
nesting

Matrix: [[7. 8], [9, 101, [11, 12]]
This is first integer in next matrix: 7

Alternatively should we create a
nesting once it reaches this section
10 of code so that it can reach values
11 above.

12

Matrix: [[13, 14], [15, 16]]

Output (for Debugging)
Matrix(0): [[1, 2, 3], [4, 5, 6]]
1

2

3

columns in Matrix A (3) rows Matrix B: (3) //WE CAN SEE THAT WE CAN ONLY
OFFICIALLY VALIDATE THE FORTHCOMING MATRIX ONCE IT HAS OBTAINED COLUMNS
FOR EXISTING ONE... | AM NOT GOING TO EXTEND MY LOGIC TO CHECK IF THE LIST
CONSISTS OF JAGGED ARRAY OF INTEGERS... | HAVE ONLY PERFORMED VALIDATION
UPON RETRIEVING THE FIRST ROW. ALSO | AM CURRENTLY INCLUDING VALIDATION
WHICH IS NOT PROPOSED IN THE CHALLENGE...

AT SOME POINT IN MY CODE, | AM CERTAIN | CAN TRY TO USE EXCEPTION HANDLING
SHOULD AN ERROR OCCUR WITH IRREGULAR END USER INPUTS. WE KNOW IT IS
VERY POSSIBLE

4

5

6

Matrix(1): [[7, 8], [9, 101, [11, 12]]
This is first integer in next matrix: 7
7

8

columns in Matrix A (2) rows Matrix B: (2) //Indication no issues found
9

10

11

12

Matrix(2): [[13, 14], [15, 16]] //and as expected no check against forthcoming matrix
since itis the last one

This is first integer in next matrix: 13
13
14
15
16

num elements: 16

I managed to implement these changes and from now on saving code in repository
matching Test case.

TEST CASE 3: Commencing the multiplication and implementing
logic to support this

| have performed several nesting of loops gaining strong understanding through the
documentation. This will be a perfect chance to try and explore the debug messages.

Output (for Debugging)

Matrix(0): [[1, 2, 3], [4, 5, 6]]

RESET first row on forthcoming matrix //This is performed to set
numElementinNextMatrixRow=0 back to 0.. This is the location in the column that will
be processed. | still have doubts if this is in correct location, but once | introduce more
screen outputs, | should be able to remediate

Element: 1 //Indication of element in current matrix

*hkkkkhkkkkkk

VALUE: 7 1x7 //it performs 1 x 7 as expected

INCREASE ROW NUMBER NEXT MATRIX //it now has to move a row down... But it has
to remembered that it should stay on same column of forthcoming matrix UNTIL it
reaches the end of row for Matrix A

*kkkkkkkk*k

VALUE: 23 2x8 //we can see this is incorrect, we expected it to perform 2x9. This is
critical error, so | will investigate this. At some point, | might consider outputting the
matrix onto the screen so that end user can relate to the operation better

[1,2,3]
[4, 5, 6]

[7, 8]
[9, 10]
[11,12]

[13,14]
[15,16]

INCREASE ROW NUMBER NEXT MATRIX

*khkkkkkkkikk*k

VALUE:47 3x8

INCREASE ROW NUMBER NEXT MATRIX

columns in Matrix A (3) rows Matrix B: (3)
RESET first row on forthcoming matrix
Element: 4

REACH!!!!: row next matrix: 3num elem: 0
REACH!!!!: row next matrix: 3num elem: 0

REACH!!!!: row next matrix: 3num elem: 0

REACH!!!!: row next matrix: 3num elem: 1
REACH!!!!: row next matrix: 3num elem: 1

REACH!!!!: row next matrix: 3num elem: 1

REACH!!!!: row next matrix: 3num elem: 2
REACH!!!!: row next matrix: 3num elem: 2

REACH!!!!: row next matrix: 3num elem: 2

Matrix(1): [[7, 8], [9, 10], [11, 12]]
RESET first row on forthcoming matrix

Element: 7

*khkkkkkkkhkkk

VALUE: 138 7x13

INCREASE ROW NUMBER NEXT MATRIX

This is first integer in next matrix: 7

Element: 8

*khkkkkkkkhkk*k

VALUE: 250 8x14

INCREASE ROW NUMBER NEXT MATRIX

columns in Matrix A (2) rows Matrix B: (2)
RESET first row on forthcoming matrix

Element: 9

RESET first row on forthcoming matrix

Element: 11

Matrix(2): [13, 14], [15, 16]]

RESET first row on forthcoming matrix
Element: 13

This is first integer in next matrix: 13
Element: 14

RESET first row on forthcoming matrix
Element: 15

Element: 16

num elements: 16

| have managed to create remediation, but it is an extremely tricky code to manipulate.
This will be test case 4

TEST CASE 4: several changes above. It seems to be following a

closer system, of traversing correct row of Matrix B. But it is not
doing all actions for each element in row on Matrix A

