Matrix Multiplication Explanation

Matrix A

1	2
3	4

Matrix B

5	6
7	8

Matrix C

9	10
11	12

Step 1: Multiply A × B

Formula: $(A \times B)ij = \Sigma (Aik \times Bkj)$

Each element is formed by multiplying a row from A with a column from B and summing the results.

 $A \times B =$

 $[[1\times5 + 2\times7, 1\times6 + 2\times8],$

 $[3\times5 + 4\times7, 3\times6 + 4\times8]]$

= [[19, 22], [43, 50]]

Step 2: Multiply the result with C

 $\hbox{\tt [[19, 22], [43, 50]]} \times \hbox{\tt [[9, 10], [11, 12]]}$

 $= [[19 \times 9 + 22 \times 11, 19 \times 10 + 22 \times 12],$

 $[43\times9 + 50\times11, 43\times10 + 50\times12]]$

= [[413, 454], [937, 1030]]

Final result:

[[413, 454], [937, 1030]]

General Matrix Multiplication Formula:

For matrices A(m×n) and B(n×p):

$$\mathsf{C} = \mathsf{A} \times \mathsf{B} \Rightarrow \mathsf{Cij} = \Sigma \; (\mathsf{Aik} \times \mathsf{Bkj})$$

The result has dimensions ($m \times p$). Multiplication is valid only when the number of columns of A equals the number of rows of B.