
1. What your code is trying to do

Your goal (and you’ve pretty much achieved it for your tests) is:

Given a string where # means “backspace the character before me”, return the final text after all backspaces are

applied.

If a # is at the beginning (or there’s nothing left to delete), it’s “ineffective” and should just disappear.

Examples in words:

• "he##l#hel#llo" → type: h e # # l # h e l # l l o

Apply backspaces step by step until all # and their deleted chars are gone → final cleaned string.

• "####" → all “backspaces” with nothing to delete → final result: empty string.

• "#test" → leading # is ineffective, so result: "test".

Your code:

• Works in-place on a StringBuilder.

• Repeatedly finds # characters and either:

o Deletes the character before them + the # (a “real” backspace), or o

 Deletes the # itself if it’s “ineffective” (e.g. at index 0 with nothing to

erase).

• Has multiple loops and try/catch blocks to handle awkward cases like:

o Multiple ### in a row. o All # at the beginning.

o Situations where all characters get deleted and sb becomes empty.

So yes: I understand the aim of the code. It’s a backspace simulator for strings.

2. What your thought process looks like from the code

Obviously I can’t read your mind, but the structure of the code does reveal a lot about how you’re thinking and

solving problems. Roughly:

a) Case-based, edge-case-driven thinking You’ve

clearly gone:

• “What if the last # is alone?”

• “What if there are multiple # in a row?”

• “What if they start at index 0?”

• “What if the string is just # or ####?”

• “What if I delete everything and end up at length 0?” That’s why we see things like:

if (sb.charAt(indexLastHash-1)!='#') {

 // handle single # at the end (normal backspace) }

else {

 // handle consecutive ###...

}

...

if (sb.indexOf("#")==0) {

 // remove ineffective BACKSPACE at index 0

}

This is a very “enumerate the tricky cases and handle each branch” style of programming. That’s a legit, very

human way to attack messy string problems.

b) Iterative experimentation & strong use of print-debugging

All the System.out.println("Formatted text: " + sb); and the multiple test cases commented in/out show:

• You debug by watching the string evolve step by step.

• You like to see each deletion and confirm your mental model.

That’s a very normal and useful way to build confidence, especially in gnarly text logic.

c) “Patch until all paths are safe” mindset Using try/catch the way you did

suggests this flow:

1. Write some logic that “should” work.

2. Hit an index error on some weird test.

3. Wrap that area in try/catch and patch the logic until errors stop happening and outputs look right.

For example:

try {

 if (sb.charAt(indexLastHash-1)!='#') {

 ...

} else {

 ...

 }

 ...

} catch (ArrayIndexOutOfBoundsException e) {

 System.out.println("SHOULD NOT REACH HERE");

}

and

} catch (StringIndexOutOfBoundsException e) { if

(sb.indexOf("#")!=-1) {

 do {

 ...

 } while((sb.charAt(0)=='#'));

 }

 return sb.toString();

}

You’re using exceptions partly as a safety net: “If something weird happens, clean up remaining # and escape.”

That tells me you’re very determined to cover all weird situations, even if the path there is a bit chaotic.

d) You think in terms of “passes” over the data You do:

• A first pass with do { ... } while (i != sb.length());

• A second pass if there are still #s:

• if (sb.indexOf("#")!=-1) {

• do {

• ...

• count++;

• } while((count<sb.length()));

• }

So mentally you’re doing: “First sweep: handle the tough stuff; second sweep: clean up leftovers.” That’s a

perfectly valid mental model, just more manual than doing it in one clean pass.

4. Big-picture summary of your thinking

From this code + tests, I’d describe your mental style for this problem as:

• Persistent and thorough – you clearly hammered it with many test cases and iterated.

• Edge-case focused – you spend a lot of energy on strange scenarios (all #, leading ###, etc.), which is a

good instinct for robust code.

• Concrete, example-driven – lots of explicit examples (TEST CASE 1, TEST CASE 2, etc.) and stepby-step

printouts.

• Comfortable with messy iteration – you’re not afraid of multiple loops, mutations, and exceptions if

that gets you to “it works on all my tests”.

ANOTHER PREVIOUS CHAT EXPLAINING CODE FUNCTIONALITY

Your Thought Process

1. Goal:

You wanted to simulate a “backspace delete” using # characters. Each # should delete the character

immediately before it (if one exists). If # appears at the start of the string (no character before it), it

should be ignored. Consecutive # characters should delete consecutively.

2. Initial Setup:

o You convert the input text into a StringBuilder sb so that you can modify it easily.

o You use a loop with a counter i to repeatedly check the string and delete characters as

needed.

o You also have additional loops using count to ensure any remaining # at the start or inside the

string are handled.

3. Main Logic:

o Step 1: Find last and first # o indexLastHash = sb.lastIndexOf("#"); o

 indexFirstHash=sb.indexOf("#");

This allows you to handle # from both ends — last for standard backspace behavior, first for nested or

consecutive #.

o Step 2: Delete character before # if it exists o if (sb.charAt(indexLastHash-1)!='#') { o

 sb.delete(indexLastHash-1, indexLastHash+1);

o }

Here, you are handling 1D cases: delete one character before a single #.

o Step 3: Handle consecutive or nested #

If there are multiple # in a row or some # that doesn’t have a character before it, you enter

2D and check the first #.

▪ If # is at the start (indexFirstHash == 0), you simply delete it (1R).

▪ Otherwise, you delete the character before it along with the #.

o Step 4: Handle remaining leading #

You loop at the start of the string to remove ineffective #s (again 1R) using a do-while loop.

4. Exception Handling:

You have try-catch blocks to catch StringIndexOutOfBoundsException or

ArrayIndexOutOfBoundsException. This is mainly for safety when trying to delete characters near the

start of the string.

5. Repeat Until Done:

o You continue looping while there are # characters in the string, or until the loop counters

exceed string length.

o At the end, you return the modified string without #.

Logical Analysis

 What is correct:

• You correctly handle the “delete previous character” behavior of #.

• You correctly handle multiple # in a row (nested deletes).

• You correctly handle # at the start of the string (no-op).

• The code passes almost all your personal test cases.

 What is logically fragile or overly complex:

1. Loop counters (i, count)

o Using i != sb.length() and count < sb.length() is not logically necessary and can cause extra

iterations. You could simply loop while (sb.indexOf("#") != -1) — simpler and more precise.

2. Exception handling o Catching StringIndexOutOfBoundsException is a safety net, but a correct

boundary check would remove the need for it. For example, always check if (index > 0) before

deleting sb.charAt(index-1).

3. Redundant checks for # at start

o You handle ineffective # in multiple places (inside the main loop and again at the end). This

makes the code harder to follow.

4. Multiple StringTokenizer or StringBuilder reassignments o You often reset sb or sj multiple

times, which is not wrong but makes the flow harder to reason about.

Verdict: Is it logically correct?

• Yes, your code is logically correct in terms of what it aims to do: simulate backspace deletion with #.

• It passes your test cases because it correctly handles:

o Single # o Consecutive # o Leading # o Nested deletes

• No, it is not optimized or cleanly structured:

o Loops and exception handling are more complicated than necessary. o The same logic is

repeated multiple times for edge cases.

o Some loops and counters are redundant.

Verdict: Is it logically correct?

• Yes, your code is logically correct in terms of what it aims to do: simulate backspace deletion with #.

• It passes your test cases because it correctly handles:

o Single # o Consecutive # o Leading # o Nested deletes

• No, it is not optimized or cleanly structured:

o Loops and exception handling are more complicated than necessary. o The same logic is

repeated multiple times for edge cases.

o Some loops and counters are redundant.

Summary of Your Thought Process

1. Identify # positions (first and last).

2. Delete previous character if it exists.

3. If no character exists before #, remove #.

4. Handle sequences of # by repeating steps 1–3.

5. Loop until no # remain.

6. Use exceptions as safety net.

