1. What your code is trying to do
Your goal (and you’ve pretty much achieved it for your tests) is:

Given a string where # means “backspace the character before me”, return the final text after all backspaces are
applied.
If a #is at the beginning (or there’s nothing left to delete), it’s “ineffective” and should just disappear.

Examples in words:

o "hett#tl#thel#llo" > type:he#t#l#hel#llo
Apply backspaces step by step until all # and their deleted chars are gone - final cleaned string.

o "###H#" - all “backspaces” with nothing to delete = final result: empty string.
e ftest" = leading # is ineffective, so result: "test".
Your code:
*  Works in-place on a StringBuilder.
*  Repeatedly finds # characters and either:

III

o Deletes the character before them + the # (a “real” backspace), or o
Deletes the # itself if it’s “ineffective” (e.g. at index 0 with nothing to
erase).
*  Has multiple loops and try/catch blocks to handle awkward cases like:
o Multiple ### inarow. o All # at the beginning.

o Situations where all characters get deleted and sb becomes empty.

So yes: | understand the aim of the code. It’s a backspace simulator for strings.

2. What your thought process looks like from the code

Obviously | can’t read your mind, but the structure of the code does reveal a lot about how you’re thinking and
solving problems. Roughly:

a) Case-based, edge-case-driven thinking You've

clearly gone:
. “What if the last # is alone?”
. “What if there are multiple #in a row?”
. “What if they start at index 0?”
. “What if the string is just # or ####?”
. “What if | delete everything and end up at length 0?” That’s why we see things like:

if (sb.charAt(indexLastHash-1)!="#') {



// handle single # at the end (normal backspace) }
else {

// handle consecutive ###...

if (sb.indexOf("#")==0) {
// remove ineffective BACKSPACE at index 0

}

This is a very “enumerate the tricky cases and handle each branch” style of programming. That’s a legit, very
human way to attack messy string problems.

b) Iterative experimentation & strong use of print-debugging
All the System.out.printIn("Formatted text: " + sb); and the multiple test cases commented in/out show:
*  You debug by watching the string evolve step by step.
*  You like to see each deletion and confirm your mental model.
That’s a very normal and useful way to build confidence, especially in gnarly text logic.
c) “Patch until all paths are safe” mindset Using try/catch the way you did
suggests this flow:
1. Write some logic that “should” work.
2. Hitanindex error on some weird test.
3. Wrap that area in try/catch and patch the logic until errors stop happening and outputs look right.
For example:
try {

if (sb.charAt(indexLastHash-1)!="#') {

}else {

} catch (ArraylndexOutOfBoundsException e) {

System.out.printIn("SHOULD NOT REACH HERE");

and



} catch (StringIndexOutOfBoundsException e) { if
(sb.indexOf("#")!=-1) {

do {

} while((sb.charAt(0)=="#"));
}
return sb.toString();

}

You’re using exceptions partly as a safety net: “If something weird happens, clean up remaining # and escape.”
That tells me you’re very determined to cover all weird situations, even if the path there is a bit chaotic.

d) You think in terms of “passes” over the data You do:

. A first pass with do { ... } while (i != sb.length());
. A second pass if there are still #s:

. if (sb.indexOf("#")!=-1) {

. do {

. count++;

. } while((count<sb.length()));

. }

So mentally you're doing: “First sweep: handle the tough stuff; second sweep: clean up leftovers.” That’s a
perfectly valid mental model, just more manual than doing it in one clean pass.

4. Big-picture summary of your thinking
From this code + tests, I'd describe your mental style for this problem as:
*  Persistent and thorough — you clearly hammered it with many test cases and iterated.

* Edge-case focused — you spend a lot of energy on strange scenarios (all #, leading ###, etc.), which is a
good instinct for robust code.

*  Concrete, example-driven — lots of explicit examples (TEST CASE 1, TEST CASE 2, etc.) and stepby-step
printouts.

* Comfortable with messy iteration — you’re not afraid of multiple loops, mutations, and exceptions if
that gets you to “it works on all my tests”.



ANOTHER PREVIOUS CHAT EXPLAINING CODE FUNCTIONALITY

Your Thought Process

1. Goal:

You wanted to simulate a “backspace delete” using # characters. Each # should delete the character
immediately before it (if one exists). If # appears at the start of the string (no character before it), it
should be ignored. Consecutive # characters should delete consecutively.

2. Initial Setup:

o You convert the input text into a StringBuilder sb so that you can modify it easily.

o You use a loop with a counter i to repeatedly check the string and delete characters as
needed.

o You also have additional loops using count to ensure any remaining # at the start or inside the
string are handled.

3. Main Logic:

o Step 1: Find last and first # o indexLastHash = sb.lastindexOf("#"); o

indexFirstHash=sb.indexOf("#");

This allows you to handle # from both ends — last for standard backspace behavior, first for nested or
consecutive #.

o Step 2: Delete character before # if it exists o if (sb.charAt(indexLastHash-1)!="#') { o

sb.delete(indexLastHash-1, indexLastHash+1);

o 1}

Here, you are handling 1D cases: delete one character before a single #.

o Step 3: Handle consecutive or nested #

If there are multiple # in a row or some # that doesn’t have a character before it, you enter
2D and check the first #.

0 |If#is at the start (indexFirstHash == 0), you simply delete it (1R).

0 Otherwise, you delete the character before it along with the #.

o Step 4: Handle remaining leading #

You loop at the start of the string to remove ineffective #s (again 1R) using a do-while loop.

4. Exception Handling:

You have try-catch blocks to catch StringIndexOutOfBoundsException or

ArraylndexOutOfBoundsException. This is mainly for safety when trying to delete characters near the
start of the string.

5. Repeat Until Done:

o You continue looping while there are # characters in the string, or until the loop counters
exceed string length.

o Atthe end, you return the modified string without #.




Logical Analysis
What is correct:

*  You correctly handle the “delete previous character” behavior of #.

¢ You correctly handle multiple # in a row (nested deletes).

¢ You correctly handle # at the start of the string (no-op).

e  The code passes almost all your personal test cases.

What is logically fragile or overly complex:

1. Loop counters (i, count)

o Usingi !=sb.length() and count < sb.length() is not logically necessary and can cause extra

iterations. You could simply loop while (sb.indexOf("#") != -1) — simpler and more precise.

2. Exception handling o Catching StringlndexOutOfBoundsException is a safety net, but a correct

boundary check would remove the need for it. For example, always check if (index > 0) before

deleting sb.charAt(index-1).

3. Redundant checks for # at start

o You handle ineffective # in multiple places (inside the main loop and again at the end). This

makes the code harder to follow.

4. Multiple StringTokenizer or StringBuilder reassignments o You often reset sb or sj multiple

times, which is not wrong but makes the flow harder to reason about.

Verdict: Is it logically correct?

*  Yes, your code is logically correct in terms of what it aims to do: simulate backspace deletion with #.

* It passes your test cases because it correctly handles:

o Single#o Consecutive # o Leading # o Nested deletes

* No, itis not optimized or cleanly structured:

o Loops and exception handling are more complicated than necessary. o The same logic is

repeated multiple times for edge cases.

o Some loops and counters are redundant.

Verdict: Is it logically correct?

* Yes, your code is logically correct in terms of what it aims to do: simulate backspace deletion with #.




* It passes your test cases because it correctly handles:

o Single#o Consecutive # o Leading # o Nested deletes

¢ No, itis not optimized or cleanly structured:

o Loops and exception handling are more complicated than necessary. o The same logic is

repeated multiple times for edge cases.

o Some loops and counters are redundant.

Summary of Your Thought Process

1. Identify # positions (first and last).

2. Delete previous character if it exists.

3. If no character exists before #, remove #.

4. Handle sequences of # by repeating steps 1-3.

5. Loop until no # remain.

6. Use exceptions as safety net.




