I have now changed as much logic as possible and the code is in an error free state for
compilation.

TEST CASE 1: Executing code and observing the interface

Welcome to Online IDE!! Happy Coding :)
*x***x***welcome to CONNECT 4**************

NOTE: Code will not terminate on a win, see onscreen messages

*#EXCURRENT BOARD***%

Enter name for Player 1:

TEST CASE 2: Adjusting name of the game and also performing player selection

Welcome to Online IDE!! Happy Coding :) RESOLVED
:«x#*ﬂx;«.*:«welcome -to TIC_TAC_TOE*‘.*:‘(X#*ﬁx*‘.*:ﬂx#*
NOTE: Code will not terminate on a win, see onscreen messages

%*CURRENT BOARD#**

T R e o B
-1 -1~
B e
L1 -1 |
I e B
-1 -1~
B e

Enter name for Player 1: PLAYERS

Amit ENROLLED
Enter name for Player 2: SUCCESSFULLY
John

**EASSIGN CHIp*®*x

Amit has been assigned: 0 chip

%*SELECT CHIP POSITION**

TEST CASE 2: Selecting chip position

Based on these errors, | need to decide if there are too many variables declared
resulting in issues.

Amit(0), Which column would you like to insert the chip?
1

Amit(0), Which row would you like to insert the chip?

2

CHECK AVAILABILITY Board height: 2 board Width:3
Chip: 0 will be placed into column: © row: 1
Position: [@,8] NOW HAS: O
Last chip inserted O by: Amit(Player 1)

¥*XXCURRENT BOARD**

)
)
o

D
]

TEST CASE 2a: identifying issues above and remediating

public -boolean checkAvailability(int rowInput, -int colInput, C r-chipVvalue, -PlayerOne plOne, -PlayerTwo plTwo, r name)
{

this.plOne=plOne;

plTwo=plTwo;

m.out.println("***CH board Width: boardWidth);

placement

) if (board[colInput][rowInput].equals("-"))
{

board[colInput][rowInput]= String.valueOf(chipVvalue);

. if (board[rowInput][colInput].equals(™-"))

board[rowInput][colInput]= ring.valueOf(chipValue);

TEST CASE 2b: Running code again

Amit(0), Which column would you like to insert the chip?

1
Amit(0),
2
¥*¥CHECK AVAILABILITY**Board height: 3 board Width:3
Chip: 0 will be placed into column: © row: 1

Position: [1,2] NOW HAS: O

Which row would you like to insert the chip?

Last chip inserted 0 by: Amit(Player 1)

#¥*XCURRENT BOARD***%*

***CHECK CONNECT FOUR**#**

¥**CHECK CONNECT FQUR****

VERTICAL CHECK => DOWNWARDS*#*%**
HORIZONTAL CHECK => RIGHT#*#**#=*
HORIZONTAL CHECK => LEFT*#*#*
DIAGONAL CHECK 1

INSIDE D1 - Diagonal north east check
DIAGONAL CHECK 2

DIAGONAL CHECK 3

INSIDE D3 - Diagonal south east check
value of offset: 1

DIAGONAL CHECK 4

¥EEASSIGN CHIp****

John has been assigned: X chip
¥*¥*SELECT CHIP POSITIOQN*#*#*

0

3 0D
o D h =
[I e
[& B o T,
O =
D

3 o
= 0
O L O

8]
D

{41

]
)

[11]

TEST CASE 3a: Implementing relevant logic in the diagonal checks as per above

I have had to consider two additional exempt locations for each diagonal move

if (columnChipPlacedZerolndex!=boardWidthZerolndex && rowChipPlacedZerolIndex!=boardBaselevel
&& (columnChipPlaced!=2 rowChipPlaced!=3) (columnChipPlaced!=1 && rowChipPlaced!=2))
{

em.out.println("INSIDE D1 - Diagonal north east check");

if (columnChipPlacedZerolndex!=0 && rowChipPlacedZerolndex!=boardHeightZeroIndex
&& (columnChipPlaced!=2 && rowChipPlaced!=1) (columnChipPlaced!=2 && rowChipPlaced!=2))

g
L

em.out.println("INSIDE D2 - Diagonal south west check™};

if (columnChipPlacedZeroIndex!=boardWidthZeroIndex && rowChipPlacedZeroIndex!=boardHeightZeroIndex
&& (columnChipPlaced!=2 && rowChipPlaced!=1) (columnChipPlaced!=1 && rowChipPlaced!=2))
{

m.out.println("INSIDE D3 - Diagonal south east check™);

if (columnChipPlacedZeroIndex!=0 && rowChipPlacedZeroIndex!=0
&& (columnChipPlaced! % rowChipPlaced!=2) (columnChipPlaced!=2
{

em.out.println("INSIDE D4 - Diagonal north west check™);

The above could alternatively be kept in an outer if loop, but it seems appropriate
maintaining conditions relevant to each scenario easily identifiable.

TEST CASE 3b: Placing the O at all following locations and determining if it bypasses out
of bounds diagonals as above

t can be seen
that diagona
checks have
been removed.
But we can also
see that

Horizontal check

oT s taking

IEEDED place. | would
[---1-=-]---[----=-|---]---] have expected
¥CHECK CONNECT FOUR¥ this to have been
VERTICAL CHECK => DOWNWARDS***** SN
HORIZONTAL CHECK => RIGHT***** milar to

HORIZONTAL CHECK => LEFT****% i‘ .
*XXASSTGN CHIP**%* P
John has been assigned: X chip ==

TEST CASE: 3c:resolve all these type issues without documentation
My issues were related to the messages outside of appropriate if statement

Also my test cases in 3a were very detrimental.

columnChipPlacedZerolndex!=0 && rowChipPlacedZerolndex

3

(
&% (columnChipPlaced! W% rowChipPlaced!=2) && (columnChipPlaced!=2 && rowChipPlaced!=3))

"

cout.println(”INS

oLDWO mMGn
[W or -
- 0 r
D <

Test case 3d: Apply same logic to all diagonal checks and run code to see if it performs
validation: PASS

Position: [2,2] NOW HAS: O
Last chip inserted O by: Amit(Player 1)

EFXCURRENT BOARD*%

o R E Sy [y [y
¥CHECK CONNECT FQUR:

VERTICAL CHECK => DOWNWARDS*#**:*
VERTICAL CHECK => UPWARDS***#**
HORIZONTAL CHECK => RIGHT***#**
HORIZONTAL CHECK => LEFT*****
DIAGONAL CHECK 1

INSIDE D1 - Diagonal north east check
DIAGOMAL CHECK 2

INSIDE D2 - Diagonal south west check
DIAGOMNAL CHECK 3

INSIDE D3 - Diagonal south east check
value of offset: 1

DIAGONAL CHECK 4

INSIDE D4 - Diagonal north west check
¥EASSTIGN CHIP**

John has been assigned: X chip

oo m =

Test 4: Play the actual game and determine winner

****CURRENT BOARD****

N
Amit(0), Which column would you like to insert the chip?
1

Amit(0), Which row would you like to insert the chip?

1

#**¥CHECK AVAILABILITY****Board height: 3 board Width:3
Position: [1,1] is ALREADY TAKEN

Last chip inserted X by: John(Player 2)

This is perfect opportunity to introduce instanceOf

However | have realised, and | did suspect it would challenge my mindset is that
instanceOf relates to connectFour

| suspect this is related to the following relationship

<<Interface==> Playable

IT APPEARS THAT public void assignChip....
this INSTANCEOF plOne
this INSTANCEOF plTwo
will always refer to the
ConnectFour object when IMPLEMENTS
executed from following
method even though both ConnectFour
classes below create ‘) i)
public static void main()

instance of the other PlayerOne plOne = new PlayerOne()..

player ﬂ»public boolean checkAvailability(\

PlayerTwo PlayerOne
PlayerTwo plOne = new PlayerOne().. PlayerTwo plTwo = new PlayerTwo()..

So | have performed remediation inline with existing technique of ascertaining last
person to place a chip.

Test 5: Play the game to completion

*4*ECURRENT BOARD****
[=-=l--=] ===]-=-]--=]-=-1---]

[o] x| -

Amit(0), Which column would you like to insert the chip?
1
Amit(0), Which row would you like to insert the chip?
3

CHECK AVAILABILITY*Board height: 3 board Width:3
Chip: 0 will be placed into column: & row: 2

Position: [1,3] NOW HAS: O

Last chip inserted O by: Amit(Player 1)

IS AVAILABLE: true

1
INSIDE D1 - Diagonal north east check
DIAGONAL CHECK
DIAGONAL CHECK
DIAGONAL CHECK
*HEASSTGN CHI i
John has been assigned: X chip

It now appears the game is complete.

| did however notice one issue as below

Test case 6: Need to adjust logic to reflect coordinate system for the Y axis

¥¥CHECK AVAILABILITY**Board height: 3 board Width:3
C 0 will be placed into column: 8 row: 2

Position: [1,3] NOW HAS: O

Last chip inserted O by: Amit(Player 1)

IS AVAILABLE: true

ok {‘(CURRENT BOARD‘(:{: *k

|- == Lo - |-
| €T - |
e e B e
-1 -1-1
o e e S B R B
ol -1-1

This is simply performed by the height of board — user input (row)
End user specifies in non-zero index method.

Once again, this has brought its own mini challenge.. | have narrowed it down as
below...

yut.println(1"+ boardHeight);
yut.println(+ rowInput);

And now | am in a position to insert chip in each position and play the game in a real
simulation....
But | need to resolve the board

Test case 7: Resolving the board

sb[i].append("|"+

+board[rowOnBoard][m]+

sb[i].append(""+" "+board[rowOnBoard][m]+

Test case 8: Playing the game

