************()UTPUT‘ %k %k %k 3k 3k 3k 3k ok ok ok ok ok ok ok >k ok sk sk sk sk kokok ok

It is failing almost instantly in trying to access the board... | have commented certain areas of code
also (which are highlighted in red), since it causes the execution to fail altogether of the software.
| am unsure of the cause...

Validation is ok for chip insertion

Welcome to Online IDE!! Happy Coding :)

[COLUMN 1: FREE, COLUMN 2: FREE, COLUMN 3: FREE, COLUMN 4: FREE, COLUMN 5: FREE, COLUMN 6: FREE, COLUMN 7: FREE]

Which column would you like to insert the coin
8
Which column would you like to insert the coin

6

Unexpected runtime error
Player 1 has dropped the Yellow chip

This is the column chip placed in:6
Exception in thread "main"
java.lang.NullPointerException

at connectFour.checkAvailability(Main.java:335)

at Playerl.insertYellowChip(Main.java:457)

at Playerl.<init>(Main.java:438)

at connectFour.<init>{Main.java:34)

at Main.main(Main.java:488)

//\t is failing almost instantly in trying to access the board... | have commented certain areas of
code also (which are highlighted in red), since it causes the execution to fail altogether of the
software.

//1 am unsure of the cause...

//Validation is ok for chip insertion

//Unexpected runtime error

/*

Online Java - IDE, Code Editor, Compiler

Online Java is a quick and easy tool that helps you to build, compile, test your programs
online.

*/

import java.util.Scanner;

import java.io.*;

import java.util.*;

import java.util.Arrays;

interface playConnectFour

{
public void insertChip();

public boolean checkAvailability(int input, int colour, String name);
public boolean checkConnectFour(int colour);
public void viewBoard();

}

class connectFour implements playConnectFour

{
int [][] board;
//int rows = 6;
//int columns = 7;
int j;
int input;

String availableColumns[] = {"COLUMN 1: FREE","COLUMN 2: FREE","COLUMN 3:
FREE","COLUMN 4: FREE","COLUMN 5: FREE","COLUMN 6: FREE","COLUMN 7: FREE"};

//THIS IS FAILING.. THIS IS TO LET END USER KNOW THE STATUS OF THE COLUMNS BEFORE
PLACING A CHIP IN
//System.out.printin(Arrays.toString(availableColumns));

Playerl p1 = new Player1(this, board);

public connectFour(int[][] board)

{

this.board=board;

}

public void insertChip()
{

}

public void viewBoard()

{
for (int [] temp: board)

{
System.out.printIn(Arrays.toString(temp));

public boolean checkConnectFour(int colour)

{

//this will have to check if 4 in a row.
// this will check first in the vertical direction

int vertical=0;
int horizontal=0;
int diagonal=0;
int counter=0;
int upRow=0;
int downRow=0;

// CHECKING VERTICALLY

// need logic here that if there is not a vertical yellow, it will set count back to 0
// not so easy since it needs to count upwards and downwards

if (j!=0)

{

for (int k = j-1; k>=0; k--) // this is checking all rows below (same column) for yellows
// since this does a pre-decrement, it would fail if j row = 0;

{

if (board[k][input]==colour) //there is also a yellow in that position

{

vertical++;

}

if (board[k][input]==0) // this is problem part of code... since it might find non-
matching colour below...
// but vertically above there might be matching......
// so need to store counter in another variable potentially.
{
counter=vertical;
vertical=0;

}
}
}

// row index is 0-5

i (j1=5)
{

for (int k = j+1; k<=5; k++) // this is checking all rows above (same column) for yellows

{

if (board[k][input]==colour) //there is also a yellow in that position

{
vertical++;
}
if (board[k][input]==0)
{
counter=counter+vertical;
vertical=0;
}
}
}

if (counter==3) // this is 3 since it excludes the chip at [j][input]
{

System.out.printIn("connect 4");
viewBoard();
return true;

}

// CHECKING HORIZONTALLY
// WITH HORIZONTAL CHECK, NEED TO CHECK EACH LAYER
// SO NEED ANOTHER FOR LOOP

// to the right
counter=0;

if (input!=6) // Note the input has been set to 6 since can not check horizontally on 0-6
index notation (7 columns)

{

for (int j=0; j<=5;j++) // this is to check each row index 0-5

{

counter=0;

for (int m = input+1; m<=6; m++) // this is checking the same row to the right for yellows..
// it is adding 1 to colsRight to ensure 5 cols are checked

{

if (board[j][m]==colour) //there is also a yellow in that position

{

horizontal++;

}

if (board[j][m]==0)
{

counter=horizontal;

horizontal=0;

if (input!=0) // Note the input has been set to 0 since can not check to any columns to the
left if chip entered in first column

{
// to the left

for (int j=0; j<=5;j++) // thisis to check each row index 0-5
{

for (int m = input-1; m>=0; m--) // this is checking all rows below (same column) for
yellows

{

if (board[j][m]==colour) //there is also a yellow in that position

{

horizontal++;

}

if (board[j][m]==0)
{

counter=counter+horizontal;
horizontal=0;

}

if (counter==3)

{

System.out.printin("connect 4");
viewBoard();
return true;

}

counter =0;

// CHECKING DIAGONALLY.

// can not check diagonally upwards if the chip sits in top row or last column

if (input!=6 && j!=5)
{
//this is checking diagonal with positive gradient
for (int m = input+1; m<=6; m++) // this has to reduce columns by 1 to ensure no overrun
diagonal check
{
upRow++;
if (board[j+upRow][m]==colour) //there is also a yellow in that position

{

diagonal++;

}

if (board[j+upRow][m]==0)
{
counter=diagonal;
diagonal=0;

// this has to ensure that the chip is not sitting along the bottom line
//this is checking diagonal with positive gradient. Extending the line.
downRow = 0;

if (j!=0 && input!=0)

{
for (int m = input-1; m>=0; m--)
{
downRow++;

if (board[j-downRow][m]==colour) //there is also a yellow in that position

{

diagonal++;

}

if (board[j-downRow][m]==0)
{
counter=counter + diagonal;
diagonal=0;

if (counter==3)

{
System.out.printIn("connect 4");
viewBoard();

}

return true;

counter=0;
upRow=0;

/!

//this is checking diagonal with negative gradient moving upwards

if (input!=0 && j!=5)

{

for (int m = input-1; m<=0; m--) // this has to reduce columns by 1 to ensure no overrun
diagonal check

{

}
}

upRow++;
if (board[j+upRow][m]==colour) //there is also a yellow in that position

{

diagonal++;

}

if (board[j+upRow][m]==0)
{

counter=diagonal;
diagonal=0;

}

//this is checking diagonal with negative gradient. Extending the line.
downRow = 0;

if (input!=6 && j!=0)

{

for (int m = input+1; m>=6; m++) //
{

downRow++;

if (board[j-downRow][m]==colour) //there is also a yellow in that position

{

diagonal++;

}

if (board[j-downRow][m]==0)
{
counter=counter+ diagonal;
diagonal=0;

if (counter==3)

{

System.out.printIn("connect 4");
viewBoard();

return true;

}

return false;

public boolean checkAvailability(int input, int colour, String name)

{

int instances=0;
this.input=input;

nm,

String chipColour="";
boolean availability=false;

//yellow is being assigned value 1

switch(colour)

{

case 1:
chipColour="Yellow";
break;

case 2:
chipColour="Red";

break;

default:

}

System.out.printin(name + " has dropped the " + chipColour + " chip");
System.out.printIn("This is the column chip placed in:" + input);

for (j=0; j<7;j++)
{

// the coin will drop to lowest position on the grid

if (board[j][input]==0) // all default values in declared array is 0
{

board[j][input]=colour; // this will input a 1 to denote yellow if available. 2 to
denote red
availability=true;

viewBoard();
checkConnectFour(colour);
break;

}

if (availability)
{

return true;

/*

// This bit of code is not compiling. Logic seems correct.

Intention is to mark the string array available columns with FULL if the column is full.
// 1t will then count if instances is equal to number of columns... and if all columns full,
//terminate the application.

if (lavailability) // end user will be prompted to enter chip in different column if no
availability

{
availableColumns[input]="COLUMN " + input+": " + "FULL";

for (String s:availableColumns)

{
if (s.indexof("FULL"))

{

instances++;
if (instances==columns)

{
System.out.printin("The grid is all full");

System.exit(0);

}

checkAvailability(input,colour,name);

}
*/

return false;

public class Main

{
public static void main(String[] args) {
System.out.printin("Welcome to Online IDE!! Happy Coding :)");

//int [][] board = new int [5][6]; // this ensures 7 columns and 6 rows

int [][] board ={ {0,0,0,0,0,0,0},
{0,0,0,0,0,0,0},
{0,0,0,0,0,0,0},
{0,0,0,0,0,0,0},
{0,0,0,0,0,0,0},
{0,0,0,0,0,0,0},
2

connectFour cf = new connectFour(board);

}

class Playerl
{
int[][] currentBoard;
connectFour cf;
chips yellow;
String name = "Player 1";

Player2 p2;

enum chips

{
YELLOW, RED;

}

public Player1(connectFour cf, int[][] currentBoard)
{
this.currentBoard=currentBoard;
this.cf=cf;
chips yellow = chips.YELLOW;
this.yellow=yellow;

insertYellowChip(yellow);
p2=new Player2(cf, currentBoard); // do not need this object.. but it is here just incase
need to get instance of p1

public void insertYellowChip(chips yellow)
{
int selection;
System.out.printIn(Arrays.toString(cf.availableColumns)); // This will show end user free
columns

do

{

System.out.printin("Which column would you like to insert the coin");
Scanner scan = new Scanner(System.in);

selection = scan.nextInt();

} while (selection<1 | | selection>7);

selection = selection - 1; //1 has been subtracted since it is a zero index notation
board....

cf.checkAvailability(selection,1,name);

}

public void insertYellowChip()
{

insertYellowChip(yellow);

}

class Player2

{
int[][JcurrentBoard;
connectFour cf;
String name = "Player 2";
Playerl p1;

enum chips

{
YELLOW, RED;

}

public Player2(connectFour cf, int[][] currentBoard)
{
this.cf=cf;
this.currentBoard=currentBoard;
chips red = chips.RED;
insertRedChip(red);
pl=new Playerl(cf, currentBoard); // do not need this object.. but it is here just incase

need to get instance of pl

}

public void insertRedChip (chips red)
{
int selection;
System.out.printIn(Arrays.toString(cf.availableColumns)); // This will show end user free
columns

do

{

System.out.printin("Which column would you like to insert the coin");
Scanner scan = new Scanner(System.in);

selection = scan.nextInt();

} while (selection<1 | | selection>7);

selection = selection - 1; //1 has been subtracted since it is a zero index notation
board....

cf.checkAvailability(selection,2,name);

