
Due to the nature of the problem and the overlap of the loop to satisfy several conditions, my test case
will officially commence in the following configuration
Since we can see one shape has cut through both opposite sides of the rectangle……
It would have been close to contemplate logical expressions to this level until the issue actually arose as
part of more difficult test cases….

TEST CASE 22 & 23

We can see the test case fails……

It is interpreting the dimensions of the blue rectangle to be the overlap…
I have performed some analysis below:

I also ran into difficulties when performing the following:

I have now completed all the test cases performing in X and Y axis >=0

During my earlier part of the testing, I had focussed on performing the following…
The idea was to give a good idea of the relationship between two shapes and how it impacts the
calculation with respect to the absolute values and as to whether it entails adding widths/heights or
performing subtraction… I am fairly convinced I now need to transpose the shapes I completed in the
positive area similar to below.

I am trying a few as below:

TEST CASE : 34 & 35

I expected above to be fine since we are not utilizing shapes which are stretching across the x or y axis.
For the following case, I am very sure the outcome will be incorrect…

We can see in fact that it has not triggered any of the logical expressions.. Which in fact is actually
correct since I programmed for exact overlay and also all coordinates in positive axis.

I think below is the best logical starting point….

It makes logical sense to run the above code again…

This is exactly positive news, so it suggests that if one rectangle crosses the y axis, there is no impact.

Perhaps it would make sense now examining outcome if one rectangle crossed the y axis

TEST CASE: FAIL (We can see that generic logical is not compliant when a rectangle crosses the y axis)

It might be worth seeing if the fail is still the same if we perform above x axis

TEST CASE:

I will examine this in the positive axis

SO, it appears that all the failed test cases are below the X axis and in which a shape is crossing the Y
axis.

So just to confirm this is the case, I will run the same test above but ensure that the most right rectangle
is resting exactly on the Y axis…

TEST CASE:

I will also run the test above the x axis but in negative quadrant:

So it appears I have finally gained an understanding of the overlaps and also the implications of crossing
the y axis.

So now, I will closely analyse the code flow for the following case. I am guessing at the area it fails, I need
to include further logic to check if the rectangle crosses the y axis…
Once I am satisfied with this, perhaps I need to also look at the outcome if two rectangles cross the Y
axis..

TEST CASE: Examining code flow

I performed following code modifications:

I also performed same again, but this referring to rectangle1

So, I am now going to explore both rectangles crossing the Y axis.
I will first try above X axis, since this was an area where there were there were no known issues..

TEST CASE: FAIL

I will now quickly investigate the area in this section of code and branch it with if else (similar to 1
rectangle spanning the y axis).
I have modified this area of code

Once again, I have to make identical change in which the rectangles are swapped when parameter is
passed to the method argument.

I believe I have covered all the test scenarios possible
I am going to formally present all test cases. If I identify an arrangement in which I feel I should explore
with a new scenario, I will present it and it will be identifiable in my test cases in the code.

TEST CASE 1:

TEST CASE 2=>7

TEST CASE 8:

TEST CASE 9: PASSING RECTANGLE2 FIRST INTO THE METHOD……

TEST CASE 10 and TEST CASE 11:

TEST CASE 12 and TEST CASE 13:

TEST CASE 12new and TEST CASE 13new:
I will now explore with a smaller inner rectangle

TEST CASE 14 and TEST CASE 15: FAIL

We can see that it has obtained the height (3) to be correct….
But for some reason, it has obtained width (8) which is totally incorrect.
It has appeared in this section of code in the following test case scenarios:
48,49 40,41

But first, I will try test case 15

TEST CASE 15: FAIL

I am going to really need to understand 48,49 40,41 with 14 and 15

ISSUES HERE AND SAME AREA OF CODE.. I can only speculate that I need to reference if the
rectXBottom (X,Y) coincides with both rectangles or the rectXTopRight (X,Y) coincides with both
rectangles.. We would then to calculate the overlap area to be the nested rectangle…
I would need to perform this for both scenarios
I think all this is in respect to having widened the scope of the main if loop… I allowed certain scenarios
enter based on coincinding coordinates.. And most likely it requires re-instating in this area of code… It
has to be remembered that several areas of code are effectively clashing in this main if block…

NO ISSUES HERE AND SAME AREA OF CODE

TEST CASE 14new and TEST CASE 15new: FAIL

So, my plan of action will be to address issue with test case14 and test case 15

And then I can re-visit test case 14new and test case 15new

I am only going to implement with rogue areas the code enters.. I am hoping all test cases will sort itself
out

TEST CASE 14 and TEST CASE 15: Re-visiting… I will just implement in the area that the code enters….

This is the associated code for this shape…

OUTPUT (TEST CASE 14)

OUTPUT (TEST CASE 15)

Now before I move onto Test case 14new and Test case 15new, I want to move the nested shape to the
bottom left.. I expect there to be issues in this configuration…
And I will also make some new test cases where the inner shape will be nested against each corner and
can also try it against the side (but not touching the corners)… It might potentially come up in my
forthcoming tests already devised, but I am sure if I address now, it will save effort later…
I will try a few in each quadrant..

TEST CASE 14 and TEST CASE 15 explore nested arrangement 1:

Please note it is going in the area of the code where it is calling another method. I had to use this during
my implementation since it was necessary to find the smallest element. But as can be seen it has
entered once…

I will now try Test Case15 in the new arrangement..

My next logical test case will be taking the smaller shape in the other corners..
I am also inclined to change the size also…

TEST CASE 14 and TEST CASE 15 explore nested arrangement 2:

TEST CASE 14 and TEST CASE 15 explore nested arrangement 3:

So perhaps, it appears that only area of the code that required adjusting was when both shapes shared
same top right hand corner as proven…

I will now move the inner shape along the edge..

TEST CASE 14 and TEST CASE 15 explore nested arrangement 4:

I am now going to try the configuration in different quadrants

TEST CASE 14 and TEST CASE 15 explore nested arrangement 5:

It can be seen it has hit no area of interest in the code

Before I attempt to resolve this issue, it would be good to know if the same issue persists in other
quadrants…

TEST CASE 14 and TEST CASE 15 explore nested arrangement 6:

Same issue

TEST CASE 14 and TEST CASE 15 explore nested arrangement 7:

So it appears all the issues that are occurring are below the X axis.
So I will take a look to understand the rationale a bit better.

I completed the following observation immediately.

So I have chosen to remove this outer if expression altogether..
I am just going to quickly run through all test cases 14 and 15.
It shouldn’t have any bearing on the test cases that already entered. I expect there to be different
outcome to

TEST CASE 14 and TEST CASE 15: PASS
TEST CASE 14new and TEST CASE 15new: FAIL (to be revisited, overlap over Y axis)
TEST CASE 14 and TEST CASE 15 explore nested arrangement 1: PASS
TEST CASE 14 and TEST CASE 15 explore nested arrangement 2: PASS
TEST CASE 14 and TEST CASE 15 explore nested arrangement 3: PASS
TEST CASE 14 and TEST CASE 15 explore nested arrangement 4: PASS
TEST CASE 14 and TEST CASE 15 explore nested arrangement 5: PASS
TEST CASE 14 and TEST CASE 15 explore nested arrangement 6: PASS
TEST CASE 14 and TEST CASE 15 explore nested arrangement 7: PASS

I am now going over all my test cases from 16 onwards.

TEST CASE 16 and TEST CASE 17:

New test exploring in negative quadrant
TEST CASE 16new and TEST CASE 17new:

TEST CASE 18 and TEST CASE 19:

TEST CASE 20 and TEST CASE 21:

We can see it has triggered two areas of code… Since both the values are the same, perhaps I can decide
on a return value on the first occurrence..

TEST CASE 22 and TEST CASE 23:

I will now experiment slightly and move the red rectangle across.

TEST CASE 22new1 and TEST CASE 23new1:

THIS IS INCORRECT… I WILL TRY THE FLIP OF THE RECTANGLES

THIS IS INCORRECT… I WILL INVESTIGATE BOTH

NOTE, THERE WERE NO ISSUES WHEN RED RECTANGLE RAN THROUGH THE MIDDLE.

I have identified the following resolution:

The output is now correct:

I will now implement the code in other section and it has resolved issue..

It would be interesting to devise a case and analyse if the red rectangle cuts through the first part of the
other rectangle….

TEST CASE 22new2 and TEST CASE 23new2:

This is clearly wrong.. So it appears where the rectangles edge has coincided with top right or bottom
left, its code that requires addressing…

But firstly, I will perform 23new2

This is also wrong, we are expecting 2 overlap

I have remediated as below..

I will now address the other area of code..

I will contine with remaining test cases

TEST CASE 24 and TEST CASE 25

I will now move the shapes into negative x and y axis

TEST CASE 24new and TEST CASE 25new:

TEST CASE 26 and TEST CASE 27:

TEST CASE 26new and TEST CASE 27new:

TEST CASE 28 and TEST CASE 29:

TEST CASE 30 and TEST CASE 31:

TEST CASE 32 and TEST CASE 33:

TEST CASE 34 and TEST CASE 35:

TEST CASE 36 and TEST CASE 37:
Just to re-iterate this passed earlier in the document also. It is passing through the x-axis and we
ascertained in our documentation that challenges will arise when rectangles pass through Y-axis. I will
do these tests at end of the existing test cases….

TEST CASE 38 and TEST CASE 39:
Also note, there overlap does not occur over the y axis

TEST CASE 40 and TEST CASE 41:

TEST CASE 40 and TEST CASE 41: down Y axis by 7

TEST CASE 42 and TEST CASE 43:

TEST CASE 44 and TEST CASE 45:

TEST CASE 46 and TEST CASE 47:

TEST CASE 48 and TEST CASE 49:

This is a typical test case in which I expect issue and code revision:

TEST CASE 14new and TEST CASE 15new:
My objectives are to look at the area of code surrounding no overlap and correcting it so that it accepts
this configuration..

I will now reflect same code in the other scenario

I have now passed all my test cases, but I am quite certain I need to try some test cases in which there is
interaction in all the quadrants… This might be too adventurous, but its ultimately a valid scenario

TEST CASE 50 and TEST CASE 51: FAIL

We can see lots work is required to resolve this. Perhaps its best if a simpler example such as overlap on
the y axis… (in negative quadrant). Also consider a more simplistic overlap also…

TEST CASE 52 and TEST CASE 53: FAIL

I can see it has gone into Must3 screen output.

Again, I can see that it has entered Must1 area…
I will remediate this exactly same as above

For now, I am still leaving the storage and method call to process minimum overlap. I will clear this as
final phase once I have checked all cases again and ascertained it is not making a decision from the
storage array..

I am now moving into a test case in which overlap is above the x axis and spanning two quadrants.
This is feeling excessively repetitive but unfortunately I could not devise a strategic based test driven
approach..

We can see both dimensions are incorrect. Based on understanding of the coding, I envisage it will
require segregation of if / else best on circumstances..

Remediating this issue:

I will now perform same remediation in other section of code (“MUST21”)

As discussed in my code comments, I will move the blue block so that y coordinates coincide with
bottom left…
I will also then move the blue block so that the corners align exactly.. And I will devise several test cases
in advance to try any scenario suitable…..
NOTE I am still following the principle of spanning across the Y axis

We can see both outputs are incorrect, I will trace the code as per usual

I implemented following change:

I will now amend the other rectangle scenario (MUST15 area)

TEST CASE 58 AND TEST CASE 59:
Both are incorrect

I have made similar code changes to above test cases, in which it required provision for spanning the Y
axis both shapes

I will implement same code in Here10 section

TEST CASE 60 AND TEST CASE 61:
It appears the above resolutions have taken care of this test case

TEST CASE 62 AND TEST CASE 63:

TEST CASE 64 AND TEST CASE 65:

TEST CASE 66 AND TEST CASE 67:

I found it odd that test case 66 entered two areas of code (MUST 2 and MUST36) whereas test case 67
entered one area (MUST35 and NOT MUST4). THE ONLY OTHER OPTION IS TO ROLL BACK THE CODE

This is practically impossible to remediate unless I compare code by code exactly in both sections…
I expected symmetry in both codes… Irrespective of this, both outcomes are also wrong..
So I will try to troubleshoot
In hindsight, I should have saved my code after each test case…..
 I will still adhere to same code for both situations..

TEST CASE 68 AND TEST CASE 69:

Again, even though the outcomes are correct we can see that Test case 68 is entering two areas of code
whereas Test case 69 enters one.. This is frustrating given my effort to replicate code….
But as long as it passes, we can consider the last entry to be correct…

TEST CASE 70 AND TEST CASE 71:

I have performed following correction….

I will now address for other area of code

But I tidied up the section of the code since I had extra else statement and logic was not brilliant….

Both are totally incorrect from height perspective…

Note: There is no issue if I transposed the arrangement into the positive quadrant

I have had to have a massive analysis..
This else area of code is associated the if where it deals with the top right not alligned on the Y axis
In principle all the criteria are the same as the if area (with exception of this logic).
So I had to copy the code from above into below section…

Now the most confusing aspect is that in the above if area, we focussed on comparing the top right X
coordinates… Both were in the respective sections of code when rectangle1 and rectangle2 had
coordinates switched…

However we also require a copy of each other’s respective code to be available in both sections…
Reason is that there will be a gap in logic available to make correct decision…

I now have a feeling I could have completed the entire project based on this.
I would need to perform a similar structure:
if both rectangles resided in one quadrant
if rectangles crossed the y axis
But I know it is never as simple as this in reality.

I have in the process spawned a few more test cases to ensure things are all ok.

TEST CASE 74 AND TEST CASE 75

TEST CASE 76 AND TEST CASE 77

TEST CASE 78 AND TEST CASE 79

TEST CASE 80 AND TEST CASE 81

TEST CASE 82 AND TEST CASE 83:

These are incorrect

I completed several changes. I am presuming whilst I started challenge in positive quadrant, I was less
stringent on some of the expressions.. It has been tidied now
I

I have now finished all my test cases… I will need to go through all of them from the start..
And now aim to phase out that method call. And tidy output…

There is still one test case which will cause lots issues and that is the overlap spanning all four
quadrants…

TEST CASE 50 AND TEST CASE 51:

I am now adding code into different areas and its first time I am identifying reusable code..
For now, I have repeated code blocks…. And as part of the tidy up process, will consolidate into
methods..

For now, my priority is to ensure that both test cases enter correct area of code…

I will now begin the main process…

But I have just figured it will be incorrect process performing the checks in here..
Reason being that whole area of code is nested inside a section governed by loops which will contradict
each others state.. For that given reason… I am just rolling back the code and testing all my test cases..
I will include validation to ensure termination of code if it crosses all four quadrants.

I am performing a few other test cases which I think are quite unique and also testing validation of the
code….

TEST CASE 84

TEST CASE 85

TEST CASE 86

TEST CASE 87 & TEST CASE 88. It might be that I simply moved the shapes further across the X axis, but
just performing to see if it validates…

TEST CASE 89 & TEST CASE 90: FAIL

TEST CASE 91 & TEST CASE 92

TEST CASE 93 & TEST CASE 94

TEST CASE 95 & TEST CASE 96

TEST CASE 97 & TEST CASE 98

TEST CASE 99 & TEST CASE 100

TEST CASE 101

