
************ OUTPUT ************************
These 6 scenarios will be tested:
Also note that I have not considered k at all yet.
This will be implemented a bit later.

Also not taken opportunity to rebuy at:
int[] stock = new int[]{5,2,4,0,1};

int[] stock = new int[]{1,3,2,8,4,10};

int[] stock = new int[]{5,2,4,0,1};
int[] stock = new int[]{1,1,8,12,15};
int[] stock = new int[]{1,3,2,8,10};
int[] stock = new int[]{5,4,8};
int[] stock = new int[]{0,4,6,3,2};

This will exclude buying at 0 and selling at profit.

int[] stock = new int[]{1,3,2,8,10};
For instance…. In following:
It would be best to buy at 1 and sell at 10 (this would give maximum 9)
However this is not how the coding problem described the scenario. It suggested:
buying and selling on the basis that it can be bought at a lower selling point.

In which case, it processed….. 3-1 + 8-2 = TOTAL 8
The exception to the above rule is if there is no point in selling with exception of the last
element. Such as this sequence:
int[] stock = new int[]{1,1,8,12,15};

*** OUTPUT (FULL SCREEN OUTPUT) *** FOR OTHER STOCKS
ABOVE, INFORMATION WILL BE REDUCED

Welcome to Online IDE!! Happy Coding :)

Stocks bought
[1, 3, 2, 8, 4, 10]

Stock being evaluated: 1

1
Next highest stock is:3 after 1
this is the profit so far1: 2(3-1)
This is the RUNNING SCENARIO TOTAL: 2
This is the next highest stock: 8 after 2
this is the profit so far3: 8(8-2+2)
This is the RUNNING SCENARIO TOTAL: 8
this is the stock: 1
this is the num: 0
WHY NOT HERE!!!!!!!!!!!
3
1
value of j:1
length:5
WHY NOT HERE!!!!!!!!!!!
2
1
value of j:2
length:5
WHY NOT HERE!!!!!!!!!!!
8
1
value of j:3
length:5
ENTERRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
Next highest stock is:10 after 4
this is the profit so far1: 14(10-4+8)
This is the RUNNING SCENARIO TOTAL: 14
WHY NOT HERE!!!!!!!!!!!
4
1
value of j:4
length:5
WHY NOT HERE!!!!!!!!!!!
10
1
value of j:5
length:5
This is the stock:1
This is all possible routes to make profit:6
VALUE HERE:

Stocks bought
[1, 3, 2, 8, 4, 10]

Stock being evaluated: 3

3
WHY NOT HERE!!!!!!!!!!!
2
3
value of j:2
length:5
WHY NOT HERE!!!!!!!!!!!
8
3
value of j:3
length:5
ENTERRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
Next highest stock is:10 after 4
this is the profit so far1: 6(10-4+0)
This is the RUNNING SCENARIO TOTAL: 6

WHY NOT HERE!!!!!!!!!!!
4
3
value of j:4
length:5
WHY NOT HERE!!!!!!!!!!!
10
3
value of j:5
length:5
This is the stock:3
This is all possible routes to make profit:6
VALUE HERE:

Stocks bought
[1, 3, 2, 8, 4, 10]

Stock being evaluated: 2

2
WHY NOT HERE!!!!!!!!!!!
8
2
value of j:3
length:5

ENTERRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
Next highest stock is:10 after 4
this is the profit so far1: 6(10-4+0)
This is the RUNNING SCENARIO TOTAL: 6
WHY NOT HERE!!!!!!!!!!!
4
2
value of j:4
length:5
WHY NOT HERE!!!!!!!!!!!
10
2
value of j:5
length:5
This is the stock:2
This is all possible routes to make profit:6
VALUE HERE:

Stocks bought
[1, 3, 2, 8, 4, 10]

Stock being evaluated: 8

8
WHY NOT HERE!!!!!!!!!!!
4
8
value of j:4
length:5
WHY NOT HERE!!!!!!!!!!!
10
8
value of j:5
length:5

This is the stock:8
This is all possible routes to make profit:0

VALUE HERE:

Stocks bought
[1, 3, 2, 8, 4, 10]

Stock being evaluated: 4

4
WHY NOT HERE!!!!!!!!!!!
10
4
value of j:5
length:5
This is the stock:4
This is all possible routes to make profit:0
VALUE HERE:

Stocks bought
[1, 3, 2, 8, 4, 10]

Stock being evaluated: 10

10

This is the stock:10
This is all possible routes to make profit:0
VALUE HERE:
ALL VALUES
8
ALL VALUES
14
ALL VALUES
6
ALL VALUES
6
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES

0
ALL VALUES
0
ALL VALUES
0
This is the highest profit possible: 14

** Process exited - Return Code: 0 **

Welcome to Online IDE!! Happy Coding :)

Stocks bought
[5, 2, 4, 0, 1]

Stock being evaluated: 5

5
WHY NOT HERE!!!!!!!!!!!
2
5
value of j:1
length:4
WHY NOT HERE!!!!!!!!!!!
4
5
value of j:2
length:4
WHY NOT HERE!!!!!!!!!!!
0
5
value of j:3
length:4
WHY NOT HERE!!!!!!!!!!!
1

5
value of j:4
length:4
This is the stock:5
This is all possible routes to make profit:0
VALUE HERE:

Stocks bought
[5, 2, 4, 0, 1]

Stock being evaluated: 2

2
Next highest stock is:4 after 2
this is the profit so far1: 2(4-2)
This is the RUNNING SCENARIO TOTAL: 2

Stock being evaluated: 4

4

WHY NOT HERE!!!!!!!!!!!

0
4
value of j:3
length:4
WHY NOT HERE!!!!!!!!!!!
1
4
value of j:4
length:4

This is the stock:4
This is all possible routes to make profit:0
VALUE HERE:

Stocks bought
[5, 2, 4, 0, 1]

Stock being evaluated: 0

0
WHY NOT HERE!!!!!!!!!!!
1
0
value of j:4
length:4
This is the stock:0
This is all possible routes to make profit:0
VALUE HERE:

Stocks bought
[5, 2, 4, 0, 1]

Stock being evaluated: 1

1

This is the stock:1
This is all possible routes to make profit:0
VALUE HERE:
ALL VALUES
0
ALL VALUES
2
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0

ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
This is the highest profit possible: 2

** Process exited - Return Code: 0 **

Welcome to Online IDE!! Happy Coding :)

Stocks bought
[1, 1, 8, 12, 15]

Stock being evaluated: 1

Next highest stock is:15 after 12
this is the profit so far1: 3(15-12+0)

This is the RUNNING SCENARIO TOTAL: 3

Stocks bought
[1, 1, 8, 12, 15]

Stock being evaluated: 1

Next highest stock is:15 after 12
this is the profit so far1: 3(15-12+0)

This is the RUNNING SCENARIO TOTAL: 3

Stocks bought
[1, 1, 8, 12, 15]

Stock being evaluated: 8

Next highest stock is:15 after 12
this is the profit so far1: 3(15-12+0)

This is the RUNNING SCENARIO TOTAL: 3

Stock being evaluated: 12

Stock being evaluated: 15

15

This is the stock:15
This is all possible routes to make profit:0
VALUE HERE:
ALL VALUES
3
ALL VALUES
3
ALL VALUES
3
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
This is the highest profit possible: 3

** Process exited - Return Code: 0 **

Welcome to Online IDE!! Happy Coding :)

Stocks bought
[1, 3, 2, 8, 10]

Stock being evaluated: 1

1
Next highest stock is:3 after 1
this is the profit so far1: 2(3-1)
This is the RUNNING SCENARIO TOTAL: 2
this is the profit so far2: 4(10-8+2)
This is the RUNNING SCENARIO TOTAL: 4
ENTERRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
Next highest stock is:10 after 8
this is the profit so far1: 6(10-8+4)
This is the RUNNING SCENARIO TOTAL: 6

Stock being evaluated: 3

Next highest stock is:10 after 8
this is the profit so far1: 2(10-8+0)
This is the RUNNING SCENARIO TOTAL: 2

Stock being evaluated: 2

2
ENTERRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
Next highest stock is:10 after 8
this is the profit so far1: 2(10-8+0)
This is the RUNNING SCENARIO TOTAL: 2

Stock being evaluated: 8

Stock being evaluated: 10

10
This is the stock:10
This is all possible routes to make profit:0
VALUE HERE:
ALL VALUES
4
ALL VALUES
6
ALL VALUES
2
ALL VALUES
2
ALL VALUES
0
ALL VALUES
0
ALL VALUES

0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
ALL VALUES
0
This is the highest profit possible: 6

** Process exited - Return Code: 0 **

Welcome to Online IDE!! Happy Coding :)

Stocks bought
[5, 4, 8]

Stock being evaluated: 5

This should be last stock:8
This is the RUNNING SCENARIO TOTAL: 3
this is the profit so far55: 3(8-5)

Stock being evaluated: 4

This should be last stock:8
This is the RUNNING SCENARIO TOTAL: 4
this is the profit so far55: 4(8-4)

Stock being evaluated: 8

This is the highest profit possible: 4

** Process exited - Return Code: 0 **

Welcome to Online IDE!! Happy Coding :)

Stocks bought
[0, 4, 6, 3, 2]

Stock being evaluated: 0

Stock being evaluated: 4

Next highest stock is:6 after 4
this is the profit so far1: 2(6-4)
This is the RUNNING SCENARIO TOTAL: 2

Stock being evaluated: 6

Stock being evaluated: 3

Stock being evaluated: 2

This is the highest profit possible: 2

** Process exited - Return Code: 0 **

*** CODE ***
/*
Online Java - IDE, Code Editor, Compiler
Online Java is a quick and easy tool that helps you to build, compile, test your programs online.
*/
import java.io.*;
import java.util.*;
public class Main
{
 public static void main(String[] args) {
 System.out.println("Welcome to Online IDE!! Happy Coding :)");
 //According to this problem you can buy the stock at 0 and sell it for a profit.
 // For example the solution to this problem states
 // for stocks 5,2,4,0,1 (4-2) + (1-0) = 3
 // However for this code I have prevented this.
 // Here are some scenarios created to test this problem. All seem to function.
 // the value of k has not been implemented

 //int[] stock = new int[]{1,3,2,8,4,10}; //CORRECT (3-1) + (8-2) + (10-4) = 14
 //int[] stock = new int[]{5,2,4,0,1}; // CORRECT (4-2) = 2
 //int[] stock = new int[]{1,1,8,12,15}; // CORRECT (15-12) = 3
 //int[] stock = new int[]{1,3,2,8,10}; //PASSES (3-1) + (10-8) = 4
 //int[] stock = new int[]{5,4,8}; //PASSES (8-4)
 //int[] stock = new int[]{0,4,6,3,2}; //PASSES (6-4)
 //int[] stock = new int[]{5,9,8,2}; // PASSES (9-5)
 //int[] stock = new int[]{1,2,3,4,5,6,7,8}; // PASSES
 //int[] stock = new int[]{19,5,32,7,15}; //PASSES (32-5) + (15-7) = 35

 //EXTRA TESTS
 //int[] stock = new int[]{5,2,15,4,18,24,9,1,1,2}; //FAILS IT BUYS (18-4) even though 24 is higher than
18
 //int[] stock = new int[]{0,1,0,1,0,2,0,1,1,1}; // PASSES 0
 //int[] stock = new int[]{16,1,8,12,17}; // CORRECT
 //int[] stock = new int[]{1,0,9,7,5,2,6,3}; // PASSES (9-1)

 int[][] difference = new int[stock.length][20];
 int count=0;
 int temp=0;
 int k;
 boolean profitPossible=false;

 int tempStore=0;
 int runningTotal=0;
 int num=20;
 int [] profit = new int[num];
 num=0;
 int max=0;
 int penultimateProfit=0;
 boolean previousProfit=false;
 boolean bypassPenultimate=false;

 for (int i=0; i<stock.length;i++)
 {
 System.out.println("\nStocks bought");
 System.out.println(Arrays.toString(stock));
 System.out.println("\n**************************");
 System.out.println("\nStock being evaluated: " + stock[i]);

 System.out.println("**************************");

 //System.out.println("current running total:" + runningTotal);

 System.out.println(stock[i]);
 int used=9999999;
 count=0;
 runningTotal=0;
 //penultimateProfit=false;
 previousProfit=false;
 bypassPenultimate=false;
 //penultimateProfit=false;

 for (int j=i+1; j<stock.length;j++) // this ensures stock is not compared against itself
 {
 if (j!=stock.length-1)
 {
 if (j==i)
 {
 j++;
 }

 // this checks if next stock is greater or higher than examined stock
 // and also if one after next is lower. These conditions will allow point of sale and rebuy at new
value
 // this is to try and fix circumstance for 1, 3 ,2, 8, 10
 //currently it is doing 10 - 8 and skipping 10-2
 // this will try to accomodate for this condition.

 if (stock[j]>=stock[i]&& stock[j+1]>stock[j] && stock[i]!=0 && j+1==stock.length-1 &&
!bypassPenultimate /*&& used!=stock[j]*/)
 {

 // this is to ensure that in stocks as below, it does not process.... 10-8 on two instances
 //int[] stock = new int[]{1,3,2,8,10};

 if (temp==stock.length-1 || temp+1 == stock.length-1)
 {
 System.out.println("GETTTTT OUT!!!!");
 break;
 }
 System.out.println("ENTERRRRRRRRRRRRRRRRRRRRRRRRRRRRRR");
 profitPossible=true;
 System.out.println("Next highest stock is:" + stock[j+1] + " after " + stock[j]);
 tempStore=difference[i][count];
 difference[i][count]=stock[j+1]-stock[j];
 runningTotal=runningTotal + difference[i][count];

 //System.out.println("this is the profit so far1: " + difference[i][count] + "("+stock[j+1] + "-" +
stock[j]+")");
 System.out.println("this is the profit so far1: " + runningTotal + "("+stock[j+1] + "-" + stock[j] + "+"
+ tempStore+")");

 profit[num]=runningTotal;
 previousProfit=true;
 System.out.println("This is the RUNNING SCENARIO TOTAL: " + profit[num]);
 bypassPenultimate=true;
 }
 System.out.println("This is used: " + used);

 System.out.println("This is i: " + i);
 //used!=i is used since it prevents
 //5, 9 , 8 ,2 (9-5) and (8-5)

 if (stock[j]>=stock[i]&& stock[j+1]<stock[j] && stock[i]!=0 && temp!=j && !bypassPenultimate &&
used!=i && stock[j+1]!=0)
 {
 profitPossible=true;
 System.out.println("USSSSSSSSSSSSEDDD value: " + used);
 System.out.println("Next highest stock is:" + stock[j] + " after " + stock[i]);
 difference[i][count]=stock[j]-stock[i];
 runningTotal=runningTotal + difference[i][count];
 System.out.println("this is the profit so far123: " + difference[i][count] + "("+stock[j] + "-" +
stock[i]+")");

 profit[num]=runningTotal;
 used=i;
 System.out.println("USED VALUEEEEEEE: " + used);

 previousProfit=true;
 System.out.println("This is the RUNNING SCENARIO TOTAL: " + profit[num]);
 // this will check all other occurrences from the current point if there is scope to sell and buy
 //conditions are similar
 for (temp=j+1;temp<stock.length;temp++)
 {
 System.out.println("What is stock j:" + stock[j]);
 System.out.println("What is stock i:" + stock[i]);
 System.out.println("What is stock temp:" + stock[temp]);
 // conditions are similar.. if next item is same or greater.. And following stock is lower than
previous
 if (stock[temp]>=stock[j] && stock[j+1]<stock[j] && !bypassPenultimate && stock[temp-1]!=0
&& stock[j+1]!=0)
 {
 if (temp+1==stock.length-1)
// this is checking if last stock in list and to avoid any exceptions, it breaks out of loop
 {
 tempStore=difference[i][count];
 difference[i][count]=difference[i][count] + (stock[temp+1]-stock[temp]);
 if (previousProfit)
 {
 runningTotal=difference[i][count];
 }
 if (!previousProfit)
 {
 runningTotal=runningTotal + difference[i][count];
 }
 //runningTotal=runningTotal + difference[i][count];
 System.out.println("this is the profit so far2: " + difference[i][count] + "("+ stock[temp+1]
+ "-" + stock[temp] +"+"+ tempStore + ")");

 System.out.println("this is the stock: " + stock[i]);
 System.out.println("this is the num: " + num);
 profit[num]=runningTotal;
 System.out.println("This is the RUNNING SCENARIO TOTAL: " + profit[num]);
 num++;
 break;
 }
 System.out.println("This is the next highest stock: " + stock[temp] + " after " + stock[temp-
1]);

 tempStore=difference[i][count];
 difference[i][count]=difference[i][count] + (stock[temp]-stock[temp-1]);
 System.out.println("this is the profit so far3: " + difference[i][count] + "("+ stock[temp] + "-"
+ stock[temp-1] +"+"+ tempStore + ")");
 //positionCompared=temp;

 if (previousProfit)
 {
 runningTotal=difference[i][count];
 }
 if (!previousProfit)
 {
 runningTotal=runningTotal + difference[i][count];
 }

 //runningTotal=runningTotal + difference[i][count];
 profit[num]=runningTotal;
 //System.
 System.out.println("This is the RUNNING SCENARIO TOTAL: " + profit[num]);
 System.out.println("this is the stock: " + stock[i]);
 System.out.println("this is the num: " + num);

 num++;
 break;
 }

 }
 }

 }

 // this is now creating a scenario to examine if there has been a buy and resell
 // it also checks scenario such as 2,4,0,1 since the current logic above
 // does not account for a buy and sell as last two stocks

 if (stock[j]>stock[j-1] && profitPossible && j==stock.length-1 && i==stock.length-2 &&
bypassPenultimate)
 {
 System.out.println("This should be penultimate stock:" + stock[i]);
 System.out.println("This should be last stock:" + stock[j]);

 tempStore=difference[i][count];
 runningTotal = runningTotal + (stock[j]-stock[j-1]);

 // It is capturing value here
 penultimateProfit=(stock[j]-stock[j-1]);
 num++;
 profit[num]=runningTotal;

 System.out.println("This is the RUNNING SCENARIO TOTAL: " + profit[num]);
 System.out.println("this is the stock: " + stock[i]);
 System.out.println("this is the num: " + num);
 System.out.println("this is the profit so far44: " + runningTotal + "("+stock[j] +"-"+ stock[j-1]+")");
 profit[num]=runningTotal;
 System.out.println("************REACH********");
 break;
 }

 // this now covers scenario such as 1 , 1, 8 , 15
 // without this logic, there will be no buy sell and buy
 // checks if stock is higher than examined stock.

 // it will only enter this scenario also if no other profits have been analysed
 // otherwise totals will be incorect.. For instance, it would process 8 => 15 when it
 // would be completed as part of normal logic.
 System.out.println("WHY NOT HERE!!!!!!!!!!!");
 System.out.println(stock[j]);
 System.out.println(stock[i]);
 System.out.println("value of j:" + j);
 System.out.println("length:" + (stock.length-1));
 if (stock[j]>stock[i] && !profitPossible && j==stock.length-1 && stock[i]!=0)
 {
 //System.out.println("Rare instance of all increasing");
 System.out.println("This stock:" + stock[i]);
 System.out.println("This should be last stock:" + stock[j]);

 tempStore=difference[i][count];
 if (previousProfit)
 {
 runningTotal = runningTotal + (stock[j]-stock[i]);
 }
 if (!previousProfit)
 {
 runningTotal=(stock[j]-stock[i]);
 }
 //runningTotal = runningTotal + (stock[j]-stock[i]);
 profit[num]=runningTotal;
 System.out.println("This is the RUNNING SCENARIO TOTAL: " + profit[num]);
 num++;
 System.out.println("this is the profit so far55: " + runningTotal + "("+stock[j] +"-"+ stock[i]+")");
 System.out.println("************REACH AGAIN********");
 break;
 }
 }
 System.out.println("This is the stock:" + stock[i]);
 System.out.println("This is all possible routes to make profit:" + difference[i][count]);
 //profit[num]=runningTotal;
 System.out.println("VALUE HERE:");
 //System.out.println(profit[num]);
 num++;
 count++;
 }
 // this is simply assigning the highest profitable route
 for (int p=0;p<profit.length;p++)
{
 System.out.println("ALL VALUES");
 System.out.println(profit[p]);
 if (profit[p]>max)
 {
 max=profit[p];
 }
}
// this gets the profit total if shares are not as such:
//5,2,4,0,1
// this now checks if scenario such as above
if (penultimateProfit!=0 && previousProfit)
{
System.out.println("This is the highest profit possible1: " + (max + penultimateProfit));
System.out.println(max);
System.out.println(penultimateProfit);
}
else
{

 System.out.println("This is the highest profit possible: " + max);
}
}
}

