Starting with this challenge, one of the most subtle changes is the following:

Previous challenge:
if (s.substring(startPos,(startPos+p.length())).indexOf(sb.toString().charAt(pos))!=-1)

This Challenge:
if (s.substring(startPos,(startPos+p.length())).indexOf(sb.toString().charAt(pos))!=0)

It has to be realised that in previous challenge we were not concerned if characters in String p appeared in any order in the block of String s.

In this new challenge, we require the match to be at index 0.

The reason is since the challenge required all permutations to be explored.

If we were to not make the above change, we would expect that ALL permutations to either appear in Strings OR none of the permutations to appearin
String s.

This is not what the challenge is trying to achieve!

for (int i=startPos; i<s.length();i++)

ut.println("Th

for (int pos=8; pos<=sb.length(); pos++)
I

this since it also
contradicts the
permutation. Instead we
need to increment the
pos variable.
N And break out the outer
¢ for loop when
pos>=p.length()

pOS++;

Also need to modify this section since we are no longer interested in substring of String s..

/now the focus is on checking to see if the character of String p appears i hat order in block size in String s

if (Character.toString(s.charAt(i)).index0f(sb.toString().charAt(pos))==0)

Whilst | am continuing with this challenge, the first real issue occurred here.

hasCharFound)

po

(Isb.toString().isEmpty())

the ma

m.out.println(

* Share

This is STARTPO!
This is sb length: 3
value of pos: @
value of sb: becb

Checking character: b against the main String index: 8{c)

H
-toString(

sb.toString().charat(pos) +

("+s.charAt(i)+

+ s.substring(startPos, (startPos+p.lengt

Exception in thread "main" java.lang.StringIndexOutOfBoundsException: begin 8, end 11, length 1@

at java.base/java.lang.String.checkBoundsBeginEnd(String.java:3319)

at java.base/java.lang.5tring.substring(String.java:1874)

at Main.findAnagrams(Main.java:208)

at Main.main(Main.java:52)

#+++*RESTORING BACKUP OF STRINGBUILDER (String

This is STARTPOS: 7

This sb length: 3

value of pos: @

value of sb: abc

Checking character: a against the main String index: 7(a) TO index:
SUBSTRING EXAMINED: acd

char found: a at index: @

a has been removed from StringBuilder (String p)= abc

This is current StringBuilder (String p): bc

value of pos: @

value of sb: bc

Checking character: b against the main String index: 7(a) TO index:
SUBSTRING EXAMINED: acd

NO MATCH FOUND

StringBuilder being emptied: bc

F**EFRESTORING BACKUP OF STRINGBUILDER (String

If we examine the previous challenge it
had the intelligence to stop at 7 when
processing the same test condition

JTEST CASE 1:

tindAnagrams(

Strictly speaking, using the do while loop in my first code, it should have also failed to progress since | have not modified these...
But we know the structure is technically correct:

NO MATCH FOUND
StringBuilder being emptied: ba
RESTORING BACKUP OF STRINGBUILDER (String p): bba

hihile(p.length()+startPos<s.length());

iz iz STARTPOS: 7

We can see that th's |S post Thi:i b length: 3

This is s length: 1@

value of pos: @

test evaluation velue of <o bba

Checking character: gains e main Str

SUBSTRING EXAMINED: acd

We can clearly see that w0 it oo :
y StringBuilder being emptied: bba Th e re | S a bso | u te |y n O
p . | e n gt h () - 3 RESTORING BACKUP OF STRINGBUILDER (St

e Subsert 2 ot oycle mumbers © reason for the code to
startPos=7
s.length= 10

reach here...
| will keep this code in my
repository.

Perhaps | will opt for a
while loop instead

while(p.length()+startPos<s.length())

startPos=counter;

for (int i=startPos; i<s.length();i++)

R My next aim is to
i o determine why it has not

1 f sb: bb
Z:E:Ei:g char'ac:er‘: b against the main String index: 7(a) p rocesse d Ot he r

SUBSTRING EXAMINED: acd

o eing espteds tho scenarios in valuesSet of

FEEXFRESTORING BACKUP OF STRINGBUILDER (String p): bba

e 7 e nwert 7 ALL permutations and

aba Subset: 3 at cycle number: 7

. .
THIS IS SB: aba t k DD d th m I
ach Subset: 4 at cycle number: I u S S I e e .
THIS IS SB: ach
cba Subset: 5 at cycle number:
THIS IS SB: cha

e e 6 st cycle mabers The program has

THIS IS5 SB: aca

** Process exited - Return Code: @ ** — te rminated Dro De rlv

In regards to investigating the next permutation, | would need to simply look at the area of code in question...
Logic suggests it has to be related to the following condition.

while(p.length()+startPos<s.length())

We know from the previous challenge, once it traversed through String s, there was no need to start the process again from the offset.

We know with this challenge, we still have outstanding permutations...
So logic suggests that once it exits out of the inner do while loop, we would need to set startPos back to 0 and also counterto 0

| have completed the following change:

an startPos in which the while loop terminated

is will in the situation and ge

nutations.

counter=8
startPo

And finally it runs through all my test executions...
Now clearly, it would be best that | compose my test case String with all the permutations...

However as | reached the end of the challenge, | had realised that | have made a fundamental mistake during the process of getting the permutations.
| had clearly forgotten to remove the selection.

Infact my selection was still taking place via random index from a String. So the only route forward was to configure a List with characters from String p.
And attempt selection.

THIS IS EQUIVALENT TO
FRXERF IR RX XXX XXX Contents of the backup set PERM UTATION WITHOUT

koo R Rk * XX Contents of the valuesSet

Subset 1: abb REPLACEMENT AND IT

Subset 2: achb

Subset 3: cbb WAS NOT THE NATURE

Subset 4: bcc

Subset. 5: boo OF THE CHALLENGE
[T VALE O 6 SINCE ALL LETTERS HAD
' TO BE USED EXACTLY
ONCE AND DISCARDED

AGAIN FROM SELECTION

Instead of detailing walkthrough, | have annotated my code and quite efficiently applied necessary changes.
It once again caused confusion as to use Lists and how to perform random selection without replication of indexes. | eventually reached a solution.

And it can be seen that selection is now as expected...

XX FFFAEAFAE XXX XX ¥ ¥Contents of the backup set
*dkdkdkkkKk KK KRR KRRk %XContents of the valuesSet
Subset 1: bca

Subset 2: acb

Subset 3: abc
Subset 4: cba
Subset 5: cab
Subset 6: bac
*dkdkkkkkkkkkk*NEW VALUE CYCLES: 16

It will be difficult to present test cases, however | will perform a full output of all the screen messages...

