I am now trying once more from my final test documentation
30032025/SummaryRange/9/Repository/Solution-Best attempt (fail inline with
document 2).java

and the latest failed test code in the repository to try and resolve this issue.

[4.9->5.1, 5.1->5.2, 4.0]

I am now going to include a test case with earlier repeat numbers.

Next number ascending

First occurrence three consecutive ascending numbers (difference)

225tored start -> end: 5.8->5.1
REPEAT
CHECKING: 5.1with 5.1
CURRENTLY IN LIST: [4.9->4.8]
5.1
5.1
5.9
REACH HERE 11111
———————————— 23229USING STORED TO WRITE RANGE
18101918Writing range: 5.8-> 5.1

asc counter: 1

i N N We can see it has not written the standalone
desc counter: @

Perhaps | need query to see if the following
CHECKING: 5.1 with 5.2 a

-
q
two above are equ

numslk+1] &&

currently in list: [4. potentialfurtherAscendingBeyond ThisEnd

ut.println("- --

ut.println("lalﬂlk g + potentialfurth
completeTicker(potentialfurtherAscendingBeyondThisStar
potentialfurtherAscendingBeyondThisStart="";
potentialfurthe

m.out.println("I
standaloneTemp = start;

th.abs(nums[k] - (nums[k-1] - diffe lon)
ath.abs(nums[k] - (nums[k-1] + difference)) silon))

sm.add(potentialfurthera

)y m.out.println(
completeTicker(star

potentialfurt
otentialfurth

[4.9->4.8, 5.0->5.1, 5.1->5.2, 4.0]

+ nums [

+ nums[k

| need to now be extensive in this criteria...

| can think of most basic scenarios as follows
NOTE: k=nums.length-2 refers to number two digits from the end

Ascending (with repeat numbers in range, not part of k=nums.length-2), descending
4.71,4.8f,4.91,5.01,5.0f,4.9f,4.8f,4.7f

A ol A -
,*'-r.O.‘T,%./'F

CHECKING: 4.9 with 5.0
a.7
4.8

currently in list: []

K!=nums. length-2

next number not descending (difference)

This is counter at the moment: @

COUNTER NOT EQUAL TO @

next number not descending (difference)

previous number descending(difference) AND/OR next number ascending (difference)
Next number ascending

Previous number descending (difference) AND next number ascending (difference)
REPEAT

CHECKING: 5.@with 5.0

CURRENTLY IN LIST

REACH HERE !!
10101810Writing range
asc counter: 3

desc counter: @

CHECKING: 5.8 with 4.9

currently in list: [4.7]
Descending sequence (difference)
K]
.9

----12Stored start -> end: 5.8->4.9
28Writing range: 5.8->

asc counter: 1

endingChain)

"+ start + "> " + end);

ding
completeTicker(s

ThisEn
ndThis Star

[4.7->5.0, 5.0->4.7]

4.7f,4.8f,4.9f,5.01,5.0f,5.0f,4.9f,4.8f,4.7f

Ascending (with repeat numbers in range, not part of k=nums.length-2 but as part of transition), descending

.7-3*5.8, 5.8, 5.8-34.
[4.7-35.8, 5.8, 5.8->4.7]

Ascending (with repeat numbers in range, part of k=nums.length-2), descending
4.7f,4.8f,4.91,5.0f,5.0f,4.9f
Incorrect

REACH HERE 11111111
229USING STORED TO WRITE RANGE

— _

currently in list: [4.7->5.0] -
if (countes

nding sequence (difference)

if(!(pc

--12Stored start -> end: 5.0-34.9
22USING STORED TO WRITE RANGE

d counter

Siriting rang . We can see this is " v nums[k]);

asc counter: o potential the same / ;

desc counter issue as above.

tests I should prevent this
write from occurring if
there is something in

sc c the store
asc counter: potentialfurtherAscendingBeyondThisEnd=

desc counter:

g .valueof(nums[k]),k, lengthNums);

(nums[k1),k,lengthNums);

©01980USING STORED TO WRITE RANGE
» 4343466Writing 12Stored start -> end: 5
[4.7->5.0, 5.0
asc counter

counter:

I can see it has performed this.
We can see that it has used the store...
But we know already that in above, we
:ﬁ‘_ . rejected the if statement... But we still
e renge: 2 had to clear the store values

irrespective.... Since the store values are
of no use once we have ascertained if
nums[k]==nums[k-1] or not... Since we
are also towards end of the data

ase counter

scendingBeyondThisstart:
ntialfurtherAscendingdeyondThiskn

.println(potent
.println(potent.
.println(sm);

tialfurther i s ialf ndingBeyondThisEnd) ;
_println(’ 0 D TO WRITE RANGE™);
_println(’ iti + potentialfurth endingBeyondThisstart + + potentialfurther
_println(sm);

[4.7->5.0, 5.0->4.9]

Ascending (with more repeat numbers in range, part of k=nums.length-2), descending
4.7f,4.8f,4.9f,5.0f,5.0f,5.0f,4.9f

FORNOW, | AM ALSO NOTICING THAT IT IS FALSELY REPORTING THE SIZE OF
DESCEND AND ASCEND... | CAN ONLY FORSEE THAT | REQUIRE AN INCREASE IN
COUNTERS IN CERTAIN AREAS... IWILL DEAL WITH THIS LATER. MY MAIN PRIORITY IS

ADDING CORRECT CONTENT INTO THE LIST

I will now try the above but reverse the ascending with descending

5.3f,5.2f,5.11,5.0f,5.0f,5.1f,5.2f,5.3f
[5.3->5.@, 5.8->5.3]

5.3f,5.2f,5.1f,5.0f,5.0f,5.0f,5.1f,5.2f,5.3f

[5.3->5.@, 5.8, 5.8->5.3]

5.3f,5.2f,5.1f,5.0f,5.0f,5.1f
[5.3-35.8, 5.8-35.1]

5.3f,5.2f,5.1f,5.0f,5.0f,5.0f,5.1f
[4.7->5.8, 5.8, 5.8-34.9]

I will now need to re-check to ensure it functions in some of the above cases, but this time the standalone are not
part of the summary range...

4.7f,4.8f,4.91,5.11,5.1f,4.9f,4.8f,4.7f

[4.7->4.9, 5.1, 5.1, 4.9->4.7]

5.3f,5.2f,5.11,5.4f,5.41,5.2f,5.1f

KING: 5.3 with 5.2

currently in list: []

Descending sequence (diffe:

ored start

rently n
cending sequence (difference)

KING: 5.1 with 5.4

rently in list: []
nuns. length-2
next number not descend

This is counter at the moment
not zero
COUNTER VALUE: 2
R next number not ascending(difference)

PR EERORREAREN
IN THE STORE: 5.2

IN THE STORE: 5.3
2aWriting range:

asc counter: @

t we can ¢
thing has
een written.
CHECKING: 5.awith 5.4
CURRENTLY IN LIST: []

REACH HERE 1111111}
019238475Writing Standalone:
asc counter: @

desc counter: @

CHECKING: 5.4 with 5.2

currently in list: [5.4]
nums . length-2
ct number not descending (difference)

is counter at the moment: @

COUNTER 0T EQUAL TO @

next number not descending (difference)

prev ascending (difference) OR nex ng(difference)

Writing Standalone: 5.4

prevent performing
k=nums.length-

with 5.1 - t is causing more

s and it has reache

1 of the data
currently in list: [5.4, 5.4]
Descending sequence (difference)

125tored start

TE RANGE

It can be seen
error is the
double writing

2)0(2)
»5.1]

cending chains: @ Descending chains: 3

exited - Return Code: & **

tentialfurthera

1ingeeyondThisen

ums. length-2)

5.3f,5.2f,5.71,5.71,5.11,5.1f

4.7f,4.8f,4.91,5.11,5.1f,5.3f,5.2f,5.7,5.71,5.1f,5.1f,4.91,4.8f,4.7f

[4.7->4.9, 5.1, 5.1, 5.3-> 5.2, 5.7, 5.7, 5.1, 5.1, 4.9-34.7]

It looks as if | have tackled the last pending issue.

But | still believe | need to find more cases to experiment with..

Perhaps | should aim for:

ascending (repeat numbers for transition) descending (repeat numbers transition) ascending

3.41,3.51,3.6f, 3.6f,3.5f,3.41,3.3f,3.2f, 3.3f, 3.3f,3.3f,3.4f,3.6f,55.0f
TICKER: A(2)D(5)A(2)S5A(2)55

[3.4->3.6, 3.6-33.2, 3.2-»3.3, 3.3,

| can see it has written 3.3 too many times...

TICKER: A(2)D(5)A(2)SSA(2)SS

[3.4->3.6, 3.6->3.2, 3.2->3.3, 3.3, 3.3,
- - ‘ .- - - @

3.3->3.4, 3.6, 55.0]

CHECKING: 3.3with 3.3

In here we are comparing

REACH HERE

---- -23229USING STORED TO WRITE RANGE -
10101016Writing range: 3.2-> 3.3 This is ok

asc counter: 1

and since both are the same, we
correctly write this standalone
and clear the store....

desc counter: @

THIS SECTIONSSSSFSESS5S5555555555555 5555555 5555555555555 555555555554
9690690695Writing Standalone: 3.3

asc counter: ing.valueOf (nums[k+1]).equals(potentialfurtherAscendingBeyondThisEnd))
desc counter:

REPEAT

CHECKING: 3.3with 3.3 *

CURRENTLY IN LIST: [3.4-> : i
3.3 | consider this to be

3.3 inaccurate. | will just check
3. this area of code again. My

REACH HERE 111111 code has no issues REPEAT
219238475Writing Standalone: 3.3 pEFfOrming thE r\ght set Df CHECKING: 3.3with 3.3
asc Co ter: @ <
: r_Luun er e numbers... CURRENTLY IN LIST: []
desc counter: @ R . REACH HERE !
SO gllven th‘s' ‘ nD“f haVe‘tD @819238475Writing Standalone: 3
CHECKING: 3.3 with 3.4 consider the following being asc counter: @
correct logic and re- desc counter: @
evaluate the standalone REPEAT

\’Vrlte ab(:]ve CHECKING: 3.3with 3.3
- CURRENTLY IN LIS [3.3]

REACH HERE !!!!!
@19238475Writing Standalone:
asc counter: @

desc counter: @

When | revisited the section of code | CHECKING: 3.3 with 3.4
could see the following error...

h.abs(nums[k] - (nums[k-1] - diffe
abs(nums[k] - (nums[k-1] + dif;

m.add(potentialfurther
m.out.printIn("-
ut.println("1¢ + poty Fi C : + nums[k]);
yondThisStart

e variables were not cleared upon using the store hence it
d replication.. | moved variables to this position

potentialfurth

potentialfurth

With such a critical change, | will go through all my test cases again in this document

[4.9->4.8, 5.e->4.9, 5.1, 5.1->5.2, 4.0]

| | am unsure why this is the only failing test case |

CHECKING: 4.9 with 4.8

currently in list: []

ending sequence (difference)

——————————— 125tored start -> end: 4.9-34.8
Establishing start: 4.9

REPEAT B
This is ok
CHECKING: 4.8with 4.8

CURRENTLY TN L [1
REACH HERE !
9USING STORED TO WRITE RANGE

101818Writing rang -> 4.8
c counter: @ This is ok
1

counter:
test: 1
1
10
false
It has no effort to
write standalone
and moved onto
currently in list: [4.9->4.8] next check

K!=nums.length-2

CHECKING: 4.8 with 5.0

next number not descending (difference)

This is counter at the moment: 1

counter is net zero

COUNTER VALUE: 1

previous number AND/OR mext number not ascendinzfg@crence)

CHECKING: 5.0 with 4.9

currently in list: [4.
Descending sequence (d

777777777777777 125tored start -» end: 5.8->4.9 | “”H use thls

Establishing start: 5.0 area to make
REPEAT
CHECKING: 4.9with 4.9 my .
CURRENTLY IN LIST: [4. observations
REACH HERE 11111

3229USING STORED TO WRITE RANGE
lBlﬂlBl@Nl‘iting range: 5.8-> 4.9

abs(nums[k] - (nums[k+1] - differenc
th.abs(nums[k] - (nums[k+1] + difference))

m.out.println(potentialfurtherAscendingBeyondThisStart

It seems it will not enter here because this checks if next
number is part of sequence. (4.8f, 5.0f)

I believe | will need an associated else statement to check if
previous number is same. If so, it would add standalone for
nums[k]

1)

ueOf(nums

completeTic|

I will now check all my devised test cases again.
However it just seems that there are always new test cases | have not explored....
But at moment, all the test cases are passing...

So | now have to try all remaining test cases in my code.

REPEAT
CHECKING: 3.3with 3.3
CURRENTLY IN LIS [1

TEEEEY] -
REACH HERE !!!iifl! Th|5 is Dk
©019238475Writing Standalone: 3.3

asc counter: @

desc counter: @

REPEAT

CHECKING: 3.3with 3.3
CURRENTLY IN LIST: [3.3]

REACH HERE 11111111 ;
819238475Writing Standalone: 3.3 This is ok

asc counter: @
desc counter: @

CHECKING: 3.3 with 3.4

currently in list: [3.3, 3.3]

K!=nums.length-2

1next number not descending (difference)

This is counter at the moment: @

COUNTER NOT EQUAL TO @

2next number not descending (difference)

previous number descending(difference) AND/OR next number ascending (difference)

Next number ascending

First occurrence three consecutive ascending numbers (difference) - -
This is ok
------------------------------------- 22Stored start -> end: 3.3-»3.4

CHECKING: 3.4 with 3.3
3.3

3-4 It has made no effort to

check the store here and
moved onto next check

currently in list: [3.3, 3.3]
Descending sequence (difference)
3.4

3.3

2Transition number: 3.4 descending(difference) on either side
Establishing start: 3.4

CHECKING: 3.3 with 3.2

| added following code just before the termination of the
loop which governed that there is descending difference
with nums[k]. We are ok to write the store 3.3->3.4 since it

({potentialfurther ndingBeyondThisEn) is ascending and 3.4->3.3is descending
(potentialfurthe endingB

ut.println(”
ta potentialfurtherAscendingBeyondThisEnd);

" + potentialfurtherAscendingBeyondThisStart+” +potentialfurther ndingBeyondThisEr

In some respects | should have compartmentalize this code within the 2transition loop to keep scope
narrower. But | found no conflict in either situation..

[3.3, 3.3, 3.3->3.4, 3.4->3.2]

I will now reverse the numbers for this test condition.

[3.4, 3.4, 3.4-)3.3, 3.4-)3.3, 3.3-)3.4, 3.2)

REPEAT
CHECKING: 3.4with 3.4

CURRENTLY IN LIST: [] OK
REACH HERE !111111]

©19238475Writing Standalone: 3.4

asc counter: @
desc counter: @

REPEAT
CHECKING: 3.4with 3.4

CURRENTLY IN LIST: [3.4]

REACH HERE !!!!!
819238475Writing Standalone: 3.4
asc counter: @

desc counter

CHECKING: 3.4 with 3.3

currently in list: [3.4, 3.4]
Descending sequence (difference)

3.
3.

-125tored start -> end: 3.4->3.3
Establishing start: 3.4
19821982using stored start
197618Writing range: 3.4->3.3

CHECKING: 3.3 with 3.4

currently in list: [3.4, 3.4, 3.4-»3.3]
K!=nums.length
1lnext number not descending (differenc
This is counter at the moment: 1
counter is not zero
Transition number: 3.3 ascending(difference) on either side
next number ascending (difference) AND previous number descending (difference
COUNTER VALUE: 1
previous number ascending (difference) AND next number ascending (difference)
3121Writing range: 3.4-> 3.3
asc counter: @
desc counter: 1
1
sec
kno

--Stored start -»> end:

CHECKTNG: 3.4 with 3

E

3.4

currently in list: [3.4, 3.4, 3.4-33.3, 3.4->3.3]
ums . length-2

0w o
-3

[
3
8

previous number descending (difference)
611lusing stored start

197618Writing range: 3.3-»3.4

asc counter: 1

desc counter: @

@241lriting Standalone: 3.2

This should be last number

asc counter: @
desc counter: @
asc counter: @

desc counter: @

TICKER: S5D(2)A(2)S
[3.4, 3.4, 3.4->3.3, 3.4->3.3, 3.3-3>3.4, 2]
Standalone numbers: 3 Ascending chains: 1 Descending chains: 1 TOTAL: 5

e T

[3.4, 3.4, 3.4-53.3, 3.4-3.3, 3.2]

I do not think | can generate many more cases.. | am just going to combine a few of them

into one and see outcome...

CURRENTLY IN LIS
REACH HERE ! !
©19238475Writing Standalon
asc counter: @

desc counter

CHECKING: 3.4 with 3.3

currently in list: [3.4]
Descending sequence (difference)

-12Stored start -> end: 3.4-33.3

3.4
3.

Establishing start: 3.4
19821982using stored start
197618Writing range: 3.4->3
REPEAT

CHECKING: 3.3with 3.3

CURRENTLY IN LIS
REACH HERE !
©19238475Writing Standalon

asc counter: @
desc counter: 1

REPEAT

n.out.println("REACH HER
TueoF (nums[k]);

©19238475Writing Standalone:

asc counter: @

desc counter: 1

CHECKING: 3.3 with 3.4

currently in list: [3.4, 3.4
k=nums . length-2

3mdriting range:

asc counter:

desc counter: 1

ascending/descending next number (diffference)
49riting range:

asc counter

desc countey

asc counter

ent for this
desc counter: ment for tl

1.out . print1n(
ring.valueof (nums[k]);|

if (potentialfurtherascendingBeyondThisstart

numsk-11)

start);
t.println(“e
icker(start,

[3.4->3.3,

CHECKING:

currently

=nums . len
3mWriting
asc counte
desc count
ascending/
49Writing
asc counte
desc count
asc counte

desc count

TICKER: 5SA(2)

[3.4-»3.3,

Standalone numbers: 2 Ascending chains: 1 Descending chains: @ TOTAL: 3

** Process

3.3 with 3.4

in list:
gth-2
range: 3.

r: e

er: 1

descending next number (diffference) ::—
range: 3.3-> 3.4 :;ﬁ

r: e

o 3
83

er: 1

N

r:

1

ETEN

exited - Return Code: @

if (lengthm
s
i

if (nums[k]==nums[

lueOf(nums[k-1]);
valueOf(nums[k]);
sm.add(start+"
out.println(

if (nums[k]!=nums[k-1])

[3.4->3.3, 3.3, 3.3->3.4]

+ end);

[4.7->5.0, 5.0->4.9, 3.3->3.2, 3.4->3.3, 3.4->3.3,

CHECKING: 3.3 with 3.2

currently in list: [4.7-»5.8, 5.8-»4.9]

Descending sequence (difference)

3.3

Establishing start: 3.3
19821982using stored start
197618Writing range: 3.3-33.2

CHECKING .2 with 3.4

currently in list: [4.7-3>5.8, 5.8->4.9, 3.3
K!=nums.length-2

Inext number not descending (difference)

This is counter at the moment: 1

counter is not zero

COUNTER VALUE: 1

previous number AND/OR next number not ascending(difference)

CHECKING: 3.4 with 3.3

currently in list: [4.7->5.8, 5.

Descending sequence (difference)

3.4

3.3

- -125tored
Establishing start: 3.4

19821982using stored start
197618Writing range: 3.4->3.3

CHECKING: 3.3 with 3.4

currently in list: [4.7-»5.8, 5

K!=nums.length-2

1next number not descending (difference)

This is counter at the moment: 1

counter is not zero

Transition number: 3.3 ascending(difference) on either side

next number ascending (difference) AND previous number descending (difference
COUNTER VALUE: 1

previous number ascending (difference) AND next number ascending (difference)

Stored start -»> end: 3.4 .3

CHECKING:

3.4

3.3

currently in list: [4.7-»5.8, 5.8-34.9, 3.

k=nums.length-2
previous number descending (difference)
6111lusing stored start
197618Writing range: 3.4-33.3
asc counter: 1
desc counter: 3 potentialfurtherAscendingBeyondThi
test: 3 potentialfurtherAscendingBeyondThisEn
11
13
false
testl
1Writing Standalone: 3.2
This should be last number
asc counter: 1
desc counter: @ [4.7->5.0, 5.0-34.9, 3.3->3.2, 3.4->3.3, 3.3->3.4,
asc counter: 1 . . - .

desc counter: @

TICKER: A(3)D(4)5
[4.7-5.8, 5.8-34.9, 3.3->3.2, 3.4-33.3, 3.4-33.3, 3.2]

I now firmly believe that if all my test cases pass, | will be able to remediate my code to
any test case which | have missed out.

Itis quite impossible to prepare so many test cases and also ensure that | can test them
manually correctly.

I have made several mass changes to the repeat number section...

However | am putting my focus onto the ticker for now.

TICKER: A(3)D(4)
[4.7-5>5.0, 5.0->4.7]

CHECKING: S5.ewith 5.8
4.7
4.8
CURRENTLY IN LIST: []
REACH HERE !
----23229U5ING STORED TO WRITE RANGE
191@1e18Writing range: 4.7-> 5.0
asc counter: 3

desc counter: @

CHECKING: 5.8 with 4.9

CHECKING: 5.1 with 5.8
5.3
5.2 .abs(. f(start) - valueOf(end) + difference)) <epsilon)
e abe Y o Of (st \
currently in list: [] L d) aluelf (st
Descending sequence (difference)
51 { out.println(”
lengthNums-2 ndingCount hasAdjust)

ewith 5.8 out.println(

descendingCounter=de Counter+l;

CURRENTLY IN LIS [1

REACH HERE !!11!

77777 3229USING STORED TO WRIF
101018189Writing range: 5.3-> 5.8

asc counter: @
desc counter: 3

test: 3

50
" wn

TICKER: D(4)D(2)
[5.3->5.0, 5.0->5.1, 4.

) <epsilon))

TICKER: A(3)D(4) TICKER: A(4)D(4)
[4.7->5.0, 5.0->4.7] [4.7-55.0, 5.0->4.7]

I will now just go through all my test cases again devised in this document. | do not
expect an adverse effect....

TICKER: D(4)A(3)
[5-3->5.0, 5.0->5.3]

out.println(

ut.println(

"+ end);

scendingChain
endingCounter++;

CHECKING: 5.2 with 5.3

5.1 - -

5.2

currently in list: [5.3->5.0]

k=nums.length-2

next number ascending (difference)
CURRENT LIST: [5.3->5.0]

35Writing range: 5.0-> 5.3

asc counter: 2

desc counter: ©

asc counter: 1

desc counter: @

CHECKING: 5.8 with 5.1
-----VALS a: @

currently in list: [5.3->5.0]

K!=nums.length-2

inext number not descending (difference)

This is counter at the moment: 3

counter is not zero

COUNTER VALUE: 3

previous number AND/OR next number not ascending(difference)

CHECKING: 5.1 with 5.2
-----VALS a: @

currently in list: [5.3->5.0]

Kl=nums.length-2

1next number not descending (difference)

This is counter at the moment: @

COUNTER NOT EQUAL TO @

2next number not descending (difference)

previous number descending(difference) AND/OR next number ascending (difference)
Next number ascending

First occurrence three consecutive ascending numbers (difference)

= = -22Stored start -> end: 5.1->5.2
Previous number descending (difference) AND next number ascending (difference)

CHECKING: 5.2 with 5.3
VALS a: 1

5.2

currently in list: [5.3->5.8]

k=nums . length-2

next number ascending (difference)
CURRENT LIST: [5.3-3>5.0]

3SWriting range: 5.8-> 5.3

asc counter: 2

desc counter: @

asc counter: 1

desc counter: @

35Writing range: 5.8->
asc counter: 2

desc counter: @

TestS

asc counter: 1

desc counter: @

TICKER: D(4)A(3)

| have fixed above via tweaking my code and tested all new test cases..
I need to be very careful since there is one failed test case.. | need have full
understanding of the scenario before making any change....

TICKER: SA(2
[3.3, 3.3->3.4, 3.3->3.4, 3.4->3.2]

One of these entries should be standalone 3.3f.
First its worth understanding why it has entered the ticker
0 method 3 times and 4 items in the List... 9

with 3.4
-- CKER:
IN TICKER: VALS a3 B

IN TICKER: S

currently in

K!=nums . lengt

Inext number not descending (difference)

This is counter at the moment: ©

COUNTER NOT EQUAL TO @

2next number not descending (difference)

previous number descending(difference) AND/OR next number ascending (difference)
TTVALS a: @ Next number ascending

First occurrence three consecutive ascending numbers (difference)

tored start -> end:

currently in

Descending sequence (difference)

on number: 3.4 descending(difference) on either side
19821982using stored
197618ckiriting range
28uriting range: 3

sxasaEsaRSICKERSS 545555 SA(2)

Establishing start: 3.4

---IN TICKER: SA(2)

currently in list: [3. .4, 3.3-33.4]
Descending sequence (difference)

3.3

3

6Writing range: 3.4-> 3.2

counter

false
test2

sesemaessTICRERS S5 +* 555 SA(2)D(3)
asc counter: @

desc count

END

END

eesssnreseTICKERSSSARREIE: SA2)D(3)

TICKER: SA(2)D(:
[3.3, 3.3->3.4, 3 L 3.4-53.2]

standalone number- cending chains: 1 Descending chai ToTAL: 3

A(2)D(3)
-4, 3.3->3.4, 3.4->3.2]

Standalone numbers: @ Ascending chains: 1 Descending chains: 1

currently in list: [3.3]

Descending sequence (difference)

3.4

3.3

2Transition number: 3.4 descending(difference) on either side
19821982using stored start

197618cWriting range: 3.3->3.4

28Writing range: 3. 4

asc counter: 2

desc counter: 1

3.3
3.4 potentialfurthe di ndThisEnd=
srsssreesssT[CKERTFF**223%: GA(2) potentialfurthe i yondThisStart:

Establishing start: 3.4 hasWrittenston
((potentialfurtherascendingBeyondThisEn

otentialfurt cendingBeyondThisStarty

(h “ittenStoreDueTra

+ end);

complet
potentialfurth

3.3, .4, 3.4-33.2]

Standalone numbers: 1 Ascending chains: 1 Descending chains: 1

| had to use the same principle of providing mutual exclusiveness in similar concept to
my test cases...
| had to introduce another variable since it was not related to having transition.

| had to remember that once it had been set to true, | had to prevent any areas of code
entering by setting the boolean to true.

And once it passed the condition without entering, | was in a position to set the boolean
hasWrittenRepeatNumber back to false, so that it is ready for the next number in the
array with the initial state.

I am now going to try below. It is exact reversal of the sequence above..
| expect it to go through different area of code...

It is meeting the standalone at
front similar to the previous failed
case

TICKER: D(2)A(3)
[3.3-»3.2, 3.2->3.4]

Standalone numbers: @ Ascending chains: 1 Descending chains: 1 TOTAL: 2

REPEAT
CHECKING: 3.3with 3.3

CURRENTLY IN LIST
REACH HERE !!

CHECKING: 3.3 with 3.2

---VALS a: @
---IN TICKER:

125tored start -»> end: 3.

CHECKING: 3.2 with 3.3
---VALS a: @
---IN TICKER:

3.
3.

currently in list:

K!=nums.length-2

if (nums[k]==nums[k-17)
r
19
.out.println dalone: " + start);
sm.add(start);
completeTicker(start, start,k,lengthNums);

[3.3, 3.3-33.2, 3.2->3.4]

I have now extended the number standalones at front, it also required remediation...

B

NEW CODE

REPEAT
CHECKING: 3.3with 3.3
=======-IN TICKER:

VALS a: @
CURRENTLY IN LIST: []
REACH HERE 1111111
REPEAT
CHECKING: 3.3with 3.3
—-------IN TICKER:

CURRENTLY IN LIST

REACH HERE 11111101
019238475kriting Standalone: 3.3
asc counter: @

desc counter: @

3.3

3.3

sassasnesreTICKER ISR,

IN TICKER: S

currently in list: [3.3]
K!=nums . length-2

1next number not descending (difference)
This is counter at the moment: @
COUNTER NOT EQUAL TO @

2next number not descending (difference)

previous number ascending (differsng
6Writing Standalone: 3.3

Standalone numbers:

scending chains: @

[1 nums[k]==nums[k+1])

"+ start);

OR next number descending(difference)

Descending chai

£ (potentialfurth

TOTAL: 5

cendingBeyondThisstart-="

1 (nums [k]==nums[k+1])

I have now practically tested all my test cases in the documentation.

But there has been one failure...

Itis extremely worrying to ensure nothing else is disrupted...

potentialfurt

I need to also fully understand scenario so that | can also generate other scenarios

resembling it.

[3.5->3.8, 3.8->3.8, 3.8->3.7]

---IN TICKER:

currently in list: []

Descending sequence (difference)

3.7
2Transition numbe scending(difference) on either side
19821982using stored art
197618ckriting range:
asc counter: 3
desc countel
3.3
3.6
TestS
T
--@@7Stored start -> end
22USING STORED TO WRITE RANGE
Writing rang: > 3.8
counter: @

counte

3

has written2 (counte (k==nums . length-
SWriting range:
asc counte ialfurtherAscending

desc counter ntialfurtherAscending

potentialfurtheraA.
falee em.out .println("”
xEwsERERSRSTICKERS=*F=*323; A(4)SD(2) t.println(" dThisStart + " + nums[k]);
asc counte
desc counter: @

descendingCounte
FEETTTEIIITICKER===*+=2222 1 A(4)5D(2) completeTicker(hers tring (nums[k]),k, lengthNums);
TICKER: A(4)SD(2) }

}
[3.5-33.8, 3.8 »3.7]
Standalone numbers scending chains: 1 Descending chains: 1 TOTAL: 3

[3.5-)3.8, 3.8-)3.7]

I do not think it will have impact on my test cases.. In the worse case scenario, itis
where k=nums.length -2
So | need to be careful and roll back the code should any issues occur

| found another issue also, again it is very specific and fortunately identifiable without
having impact elsewhere.

TICKER: A(2)D(3)S
[35.1->35.3, 35.3->35.1, 85.6]

ransitionNumber +

<epsilon))

TICKER: A(3)D(3)S
[35.1->35.3, 35.3->35.1, 85.6]
Standalone numbers: 1 Ascending chains: 1 Descending chains: 1 TOTAL: 3

2.3->2.8, 2.8->2.7, 2.7->2.9, 4.

currently in list: [2.9-32.3]
Descending sequence (difference)
2.8

2.7

2Transition number: 2.8 descending(difference) on either side
19821982using stored start
197618cHriting range: 2.3-3>2.8
ickerCounter==1 || tickerCounte
abs(nums[k] - (nums[k-1] + d

bs(nums[k] - (nums[k+1] + difference

dingCounter-ascendingCounter+1;

hasAdjust=true

TICKER: D(7)A(6)D(2)S

[2.9-52.3, 2.3-32.8, 2.8->2.7, 4.0]

INFACT I DISCOVERED IT IS RELATED TO ANY TRANSITION SCENARIO, SO | REMOVED LOGIC
RELATED TO TICKERCOUNTER==1 or TICKERCOUNTER==2

| ran into several issues with ascending chain in between the ticker in which it was too
short ortoo long.

| had to evaluate each of these scenarios:

I had to re-work the ticker section and found this to be successful.
It of course creates a doubt for all my other test cases.. | know it will not change the List.
So I will need to check some previously checked test cases again...

King for transition into

his logic forward as below

evious outcom

was dependency on pr ea
numslK]. | carried

e\
cende ncy g« ”DL forward

F ((tickerCcounter==1 | tickercounter==2)
(Math.abs(nums[k] - (nums[k+1] + difference)) <epsilon) && !'hasAdjust)

Sys m.out.printind” ASE1™);

afcendlngcounter afcend1ngcounter~1,
m.out.printind” W VAL: " += ascendingCounter);

has~djustf rue;

out.printin(”----:"+previousoutcome);
out.printin(nums[k]);
=m.out.printin(nums[k+1]);

e
scencl

if ((previocusoutcome=="standalone"™ | previousOutcome=="de
n.abs(nums[k] - (nums[k+1] + difference)) epsllon)
'hasAdjust)

System.out.println("INSIDE HERE!!!
ascendlngCounter ascendingCounter+1;
hasAdjust=true;

<

5

F ((k==1lengthNums-2) && !hasAdjust)

I am also making a calculated late change in my code due to following test cases:

o write the last range at end at position k=nums.length-2
ervous to perform this but | could find common area which
also included a break at the end since it has written e\

if ((potentialfurtherAscendingBeyondThisStart
(potentialfurtherAscendingBeyondThisEnd=
haskirittenRepeatNumbe

"+ end);
m.add(start+ +

completeTicker(start,end,

br

From all coding there is one are which can be confusing with respect to output

3.2f,3.3f,3.2f (3.2->3.3, 3.3->3.2)
3.2f,3.3f,3.3f,3.2f (3.2->3.3, 3.3->3.2)
We can see they are both summarised in exactly the same way...

Since when | started my coding | acknowledged the significance of providing the overlap
to ensure no information is lost to end user..

And as can be seen on the above examples, we do not know which one has formed on
the basis of

int[] nums = new int[]{0,1,2,3,4,3,2,1};

| have to
account
overlap twice

otherwise data

| REVISION REQUIRED would be
meaningless
as below
|0‘>4 | |3'>1 It would omit this
transition otherwise
% > without extra logic

| POTENTIAL PITFALL I considerations

So only way is the information provided on overlap in the system output.

| have managed to modify my ticker, since when coming from descending sequence to
ascending sequence..., if the next number after num[k] is ascending (difference), it is full
consolidation that there is transition... | am using notation “-“ to identify these on the ticker.
Likewise if the transition is ascending sequence, descending sequence, we expect next number
after nums[k] to have descending difference.

TICKER: A(3)-D(3)
[1.1->1.3, 1.3-1.1]
Standalone numbers: @ Ascending chains: 1 Descending chains: 1 TOTAL: 2

TICKER: D(3)-A(3)
[1.5->1.3, 1.3->1.5]

Standalone numbers: @ Ascending chains: 1 Descending chains: 1 TOTAL: 2

