TEST CASE 1 (on 87 line critical code): simply place System.out.println(“Junction X)

uniquely identifying each junction in the code

I reached 14 junctions in total and was content this was done accurately

TEST CASE 2 (on 87 line critical code): run through all 4 scenarios and record the
junctions it traversed...

//int[] nums = new int[}{0,2,3,4,6,8,9}; //Testcase1 PASS Junction2,6,10,11,12,3,5,14,13,4
//int[] nums =new int[[{-1}; //Testcase2 PASS Junction 1
//int[] nums =new int[[{0}; //Testcase3 PASS Junction 1

//int[] nums = new int[){0,1,2,4,5,7}; //Testcase4 PASS Junction 2,3,5,6,10,14,9,7

However it can be seen that it has not passed through Junction 8.

out.println("” BH
out.println(" + counter + M--- - LAST TO LAST ITEM :" + nums[k]);

if (counter==8)
) | found it quite strange
ut-println(; since | was patching my
code inline with the
outcome.. Perhaps as
the complexity
(increased, it faded out of
sm.add(start); scope?

TEST CASE 3 (on 87 line critical code): So the most logical action entailed devising a
scenario of numbers which will invoke this segment.

The only outstanding scenario is to explore having more standalone numbers at end of
an existing scenario provided in the challenge...

int[] nums = new int[]{0,1,2,4 »8,10,14};

-—— =

counter:0 LAST ITEM :10
JUNCTION 8

HERE

[6->2, 4->5, 7->8, 7->10, 14]

TEST CASE 4 (on 87 line critical code): Trying to understand the logistics in this area of
code

if (k==nums.length-2)

cout.printIn("JUNCTION 7");

.out.println("counter:" + counter + " LAST TO LAST ITEM :"™ + nums

if (counter==0)
The following code has been inputted
.out.println("JUNCTION 8"); and replaced
btPlng.YalueOF(nums[k]); 5m.add(5tart+
em_out.println("HERE");
sm.add(end);
em.out.println("6Writing range: " + start + "-> " + end);
ng.valueOf(nums[k+1]);
sm.add(start);

TEST CASE 5 (on 87 line critical code): Running the code again with new scenario:

It has passed perfectly... The only extension would be to try summary ranges after 19

and then back to standalone range...

TEST CASE 6 (on 87 line critical code): extending beyond above range

,4,5,7,8,10,14,17,19,23,24,25,26,35,42,43,44};

2Writing range: 23-> 26| h
This is ok

value k: 15

length nums: 19
value of counter: ©
FEEEFELFEELFFELFFELCHECKING: 35 with 42

dkkkkkkkkkkkp MNeed to evaluate areas

in orange

value k: 16
length nums: 19
value of counter:

e
EEEELELELEELLELLLLLLLC 1 42 with 43

Establishing start: 42

value k: 17

length nums: 19

value of counter: 1
FEEEFEEFEFEEFEFEEFECHECKING: 43 with 44

JUNCTION 3
[0->2, 4->5, 7->8, 1@, 14, 17, 19, 23->26, 35]

2Writing range: 23-> 26| &

value k: 15 This is ok
length nums: 19

value of counter: @
EEFEEELEEEFEEEELEELCHECKING: 35 with 42

dAkdkrkkkkkkkg Need to evaluate areas

in arange

value k: 16
length nums: 19

value of counter: @
EEFEEELEEEFEEEELELEEC 1 42 with 43

Establishing start: 42
value k: 17

length nums: 19 Incomplete traversal
value of counter: 1 even though all
FEFEFFFEEFFFFEFFFELCHECKING: 43 with 44 comparisons made
JUNCTION 3

[e->2, 4->5, 7->8, 1@, 14, 17, 19, 23->26, 35]

l introduced this area of code and with better debugging:

if ((nums[k]+1)==(nums[k+1]))
I
L

m.out.println{"JUNCTION 3");

m.out.println{"VAL COUNTER: " + counter);
if (counter % (k==nums.length-

m.out.println{"JUNCTION 4");
ing.valueOf(nums[k]};
ing.valueOf(nums[k+1]);

sm.add(start+"->"+end);

n.out.println{"SWriting range: " + start + "-> " + end);

if (counter! t (k==nums.length-2}}

f

.valueOf (nums[k+1]);
sm.add(start +"

X

m.out.println("6Writing range: " + start +

+ end);

X

n.out.println{"Terminating summary range join"};

value of counter: @
EFFFFFFEFFFFFFFFFFFCHECKING: 35 with 42
JUNCTION 6

JUNCTION 18
tti‘13ttttt3—1tttt‘l—ttt‘ttttt‘z‘

JUNCTION 11

JUNCTION 1

6Writing Standalonme: 35

value k: 16

length nums: 1%

value of counter: @
EFFFFFFFFFPFFFFPFPECHECKING: 42 with 43
JUNCTION 3

VAL COUNTER: @&

JUNCTION 5

Establishing start: 42

value k: 17

length nums: 19

value of counter: 1
EFFFFFFFFFFFFFFFFFFCHECKING: 43 with 44
JUNCTION 3

VAL COUNTER: 1

Terminating summary range join

[e->2, 4-»5, 7-»8, 18, 14, 17, 19, 23-»26, 35, 42->44]

So |l am content now, | will just run one more scenario.

TEST CASE (on 87 line critical code):

int[] nums = new int[]{®,1,2,4,5,7, 14,17,1

[@-»2, 4-»5, 7-»8, 1@, 14, 17, 19, 23->26, 35, 42, 47]

TEST CASE (on 58 line critical code): All original challenges as per Programiz and my
extension scenarios:

PASS

I am now going over my original code and will run the newly devised test cases there.
But | will build up slightly slowly

TEST CASE (on 58 line critical code):

int[] nums

Value of counter: @
Standalone: 17
[@->2, 4->5, 7->8, 10, 14, 17]

if (counter==0)
{
m.add(String.valueOf(nums[k]));

em.out.println("Standalone: ™ + nums[k]);

¢ the start to be the next number in the array
start = String.valueOf(nums[k+1]);

sm.add(String.valueOf(start));

TEST CASE (on 58 line critical code): Retesting the above = PASS

int[] nums = new int[]{@,1,2,4,5,7,8,10,14,17,19};

[e->2, 4->5, 7->8, 10, 14, 17, 19]

TEST CASE (on 58 line critical code): | added a few more standalone ranges

int[] nums = new int[]{e,1,2,4,5,7,8,10,14,17,19,25,29,30};

[@->2, 4->5, 7->8, 1@, 14, 17, 19, 25, 29->30]

I will now try the same additional official test cases from my other code:

TEST CASE (on 58 line critical code): ALL PASSED

//INITIAL CHALLENGE

nums

