
So as usual, I am in this documentation again to try and trace through my code…
I have taken a small extract of the output (OutputToleranceLimit.txt)…

//PROVIDED INPUT

//float[] nums = {

 // 4.9f, 4.8f, 4.7f, 4.6f, 4.7f, 4.8f, 4.9f, 5.0f, 48.5f, 91.7f, 82.9f, 57.6f, 57.5f, 57.4f, 57.3f,
57.2f,

//OUTPUT

[4.9->4.6, 4.6->4.7, 4.7->4.8, 4.8->4.9, 4.9->5.0, 48.5, 91.7, 82.9, 57.6->57.2

TEST CASE: Identifying pattern
It can be seen that 4.9f, 4.8f, 4.7f, 4.6f has been summarised as 4.9->4.6
Now there is a change in direction….. 4.6f, 4.7f as 4.6->4.7
But it continues to separate 4.7->4.8, 4.8->4.9, 4.9->5.0
So my first point of investigating will be checking 4.7 with 4.8 and 4.8 with 4.9 in my
text file….

TEST CASE: Determining rationale for issue

The ironic area is that the summary ranges are not failing:

If we review the data again in parallel:

So my focus will go straight to check 4.7 => 4.8

TEST CASE:
This has required a severe amount of mental resource…
Firstly I have broken down the above into something more manageable and relevant to
my investigation:

4.9f, 4.8f, 4.7f, 4.6f, 4.7f, 4.8f, 4.9f, 5.0f, 48.5f, 91.7f

In simple terms… see below:

The code translates to similar:

It can be seen as I run the execution, the output is successful

I am extremely pleased with this outcome since it was a challenging addition to my
code.

TEST CASE:
My next intuition was to change the values from this point onwards….

FAIL

And fortunately it is exactly in the same area of code that I made changes, which in
some respect will make my life much easier to fault find!!

It performs this operation, and this is stating that nums[k] 4.5 is greater than nums[k-1]
4.7 by (difference + epsilon)
We know difference has been configured to 0.1…. So, clearly this is not the case,

So it would correctly entered associated else and write the standalone number….

But question remains, has the newly entered code really had an impact? Because I
introduced logic

And it can be seen that it was an issue in my previous code:

Effectively what it suggests is that before I write standalone 4.5, I need to check if there
is an ascending or descending in front….
If there is, we are only interested in the start until chain stops…
This would be start = nums[k]

I am rather surprised this has not flagged up earlier anywhere before given that I have
completed standalone write six times in my code…

For now, I will just target if loop.
And unfortunately it has totally messed up the outcome…

Before I move further, I need to understand my false reasoning for this.
We can see in the photo above that the correct output at yellow.

I immediately found flaw in my logic.. I have remediated this.
The excellent news below is that it has not performed a standalone write for 5.0f or 4.5f,
so I am definitely getting closer…

TEST CASE: I will now try the two test cases and see if they both pass.

This has stayed untouched…

So this is positive news given level of tweaking..

Now it is massively in my interest to run through all the test cases in the program before
I explore with 1000 digits…

TEST CASE: FAIL

I am going to investigate quite quickly since its an error..
I expected this to be similar to transition example above…
Once again I have followed the debugging

TEST CASE:
I will now try all three small test cases again that deal with ascending and descending
by 0.1

It is a positive sign, now I will try the 1000 digit ChatGPT array.
In effect it was this that assisted me ascertain errors.

I also need to be extremely careful when I check the debugging for any instances in
which it adds standalone numbers…
It might be the same tweak that I completed above….
This will be a slow process for me to check if I am 100% satisfied…

Unfortunately there are errors in the initial part…. Good news is that it is related to the
direction of the written start -> end
And it is missing numbers only in the case of a sequence.

The first thing I did was reduce the dataset since working with 1000 numbers is
extremely difficult…

We can see that although I went long extent to fix the issues, the original epsilon code
was consistent in some areas which the Fixed code failed… However I will continue
moving forward since I feel I am on the right track… I believe I have a good sample of
information to finish this challenge.

ORIGINAL DATA

 4.9f, 4.8f, 4.7f, 4.6f, 4.7f, 4.8f, 4.9f, 5.0f, 48.5f, 91.7f, 82.9f,
57.6f, 57.5f, 57.4f, 57.3f, 57.2f, 57.3f, 57.4f, 57.5f, 57.6f,
26.1f, 25.4f, 21.2f, 83.5f, 56.3f, 56.2f, 56.1f, 56.0f, 55.9f, 55.8f, 55.7f, 55.6f, 13.9f, 35.7f,
54.8f, 54.7f, 54.6f, 54.5f,
 54.6f, 54.7f, 54.8f, 54.9f, 49.9f, 9.6f, 86.0f,
77.7f, 77.8f, 77.9f, 78.0f, 78.1f,

78.0f, 77.9f, 77.8f, 77.7f, (we can see this data is missing below)
25.3f, 72.8f, 42.5f,

74.5f, 74.4f, 74.3f, 74.2f, 74.1f, 74.2f, 74.3f, 74.4f, 74.5f,
90.6f, 30.0f, 66.5f, 11.2f,
64.2f, 64.3f, 64.4f, 64.5f, 64.6f, 64.5f, 64.4f, 64.3f, 64.2f,

--

FIXED CODE
[4.9->4.6, 4.6->5.0, 48.5, 91.7, 82.9, 57.6->57.2, 57.2->57.6, 26.1, 25.4, 21.2, 83.5, 56.3-
>55.6, 13.9, 35.7, 54.8->54.5, 54.5->54.9, 49.9, 9.6, 86.0,

78.1->77.7 (we can see the direction is back to front to the above), but it is missing the
next range above (see bigger font)
25.3, 72.8, 42.5, 74.5->74.1, 74.5->74.5 (we can see this is back to front to above,
and why is start 74.5 and not 74.1).
90.6, 30.0, 66.5, 11.2,
64.6->64.2 (we can see that it is back to front) and also it is missing 64.2 – 64.5)
18.8, 49.3, 60.3, 51.1,

--

This is the original epsilon code
This code never had issue of the reversing ranges as above..
Red areas are areas with issues

[4.9->4.6, 4.6->4.7, 4.7->4.8, 4.8->4.9, 4.9->5.0, 48.5, 91.7, 82.9,
57.6->57.2, 57.2->57.3, 57.3->57.4, 57.4->57.5, 57.5->57.6, 26.1, 25.4, 21.2, 83.5,
56.3->55.6, 13.9, 35.7, 54.8->54.5, 54.5->54.6, 54.6->54.7, 54.7->54.8, 54.8->54.9,
49.9, 9.6, 86.0,
77.7 (this is the first real error, all other areas above are due to no collapsing.
Standalone entry not required.. This has been fixed for example…)
77.7->77.8, 77.8->77.9, 77.9->78.0,
78.1->77.7 (we can see it should include the overlap with 78.0 but it has not done this…
Even in my fixed code, it has dropped this, which I will investigate).

25.3, 72.8, 42.5,
74.5->74.1, 74.1->74.2, 74.2->74.3, 74.3->74.4, 74.4->74.5, 90.6, 30.0, 66.5, 11.2,
64.2, 64.2->64.3, 64.3->64.4, 64.4->64.5,
 64.6->64.2 (again start should be 64.5, this is an area I have fixed in code above).
18.8, 49.3,
--

TEST CASE:

Currently

Once implemented the above code, the output is as follows:

I was expecting 77.1f => 78.1

Analysing my logic:

I have amended the code as below:

And all seems well.. I do not think I have jeopardised any other test cases since it highly
controlled modifications…

Now, I will place my focus on remediating the next section that failed in my new code…
I will create another test case to just focus on this section….

TEST CASE:

We can see it has fixed the issue…..

I will quickly try all test cases below

TEST CASE:

This has failed, here are my explanations below:

It can be seen that test case now passes.

I identified that potentially in every area where standalone number is written, I should
endeavour to perform. But I have no other test cases providing this otherwise. So it is
not considered a control change.

isFirstOccurenceAscendingChain=false;
isFirstOccurenceAscendingChainNoTransition=false;

There is one test that was continuously playing on my mind during the development
phase… This was the presence of identical standalone numbers…
So I have quickly added some at the start of one of my test cases and at the end…..

TEST CASE:

We can see that it has not merged the 4.9 with 4.9.

I also tried another case:

And it can be seen that this is perhaps the easiest fix on paper… Where it performs
check of consecutive numbers, it it finds nums[k] and nums[k+1] are equal with
respect to difference and epsilon, simply move to next iteration…
Logic suggests it would do this for ascending and descending checks….

And after all this mental pounding, I believe I had overcomplicated the thinking process.
It merely required the below.. We are not concerned with differences, we are only
concerned if the numbers are equal and there is no error involved in this process!!

When getting ChatGPT to generate the sample it’s the only input I did not specify, allow
repetitive standalone numbers…

For now, I am trying all my test cases again… And if they all pass, I will run through the
1000 number case ChatGPT extract. But I will pay extra attention to writing standalone
events…

TEST CASE:
Fortunately I have moved fairly far into the numbers. I believe at this point, it requires
human intervention and best technique is to present the information in an Excel
spreadsheet to have full accountability and avoid human error at this critical stage…

And as I finished inputting the entries into Excel, I spotted one mistake at the end…

I am not entirely surprised that there was an error here, since there was so much
negotiation done in my code… But I can clearly see something that it might be related to
those two boolean variables… Although it is difficult to tell unless I look at the
debugging aspect again…

However before I address above, I wanted to try few more arrays.. This has created a
massive doubt in my head..

TEST CASE: (3 ascending numbers no issues)…

TEST CASE: 2 ascending numbers

This will be my priority…..
If I fail to find answer, I can do something analyse if X->X and use previous end..
But I do not want to enter this path…..

My next straight forward test case will be reflection:

TEST CASE:

I will just follow the screen output and performed this code update.

The output is now correct:

TEST CASE: I will now examine the next logical test case

Now I will try slight adjustment

TEST CASE:

It can be seen it has failed..
It has required several tweaking, see areas in code.

I now need to explore more advanced test cases which I suspect would error also.

TEST CASE:

TEST CASE: Makes no difference to above.. Number descending in front of ascending
is irrelevant..

TEST CASE:

TEST CASE: Ascending then descending (3 descending numbers) – No issues

I am now going to embed these into the main ChatGPT array…
I hope it will translate similarly….

I will now add it to the end

At this moment, I believe all the additional changes that I made are not violating
anything else…
But I will need to run the entire chatGPT original array again to confirm this…
I will need to fill the Excel spreadsheet again also.

I have compared all values and they are all the same except for last two values which
have been fixed….

The only code amendment in which I was totally unsure of when to set back to false with
this boolean:

But I am quite certain that once it is set to true, it will be referenced in this section once
only so it is irrelevant.

One other final area not performed is the calculation of epsilon…
It was a nice experience to explore this manually, but I chose the initial sample of
numbers and quick visual examination…

TEST CASE: Incorporating logic to calculate epsilon and set the epsilon variable
IN FUTURE

