
We know in order to incorporate the summary range for ascending and
descending sequence code together, there has to be a decision point in the
code.

int[] nums = new int[]{0,1,2,4,5,7,6,10,14,17,19,23,24,25,26,35,42,47};

If the above code is executed with ascending summary range checker, we see
at 7 and 6 it has regarded it as standalone.

So now if I ran a slightly more sophisticated array with descending code, we can
see that it makes correct decision....

int[] nums = new int[]{5,4,4,4,5,7,6,10,14,17,19,23,24,25,26,35,42,47};

For now, I am just going to examine this from perspective of whole prices for
the stocks as per the challenge.
Every time it makes a standalone decision, I will call the alternate class and
await the outcome.

I will build my first test case simply from this.

TEST CASE: Configure code to call alternate class in which standalone decision
is made. Use slight code adjustment to ensure that it is processing alternate
code at same index location......

For now I have introduced a much simpler array to get started....

Based on the above and current logic, we know that it would attempt a
standalone input into the list for 5,4...

So I have identified this junction, and inserted the if code to check if
descending...

The code now reaches this overall output,

So I need to check where it has decided to check between Junction 15 and at
the point where it has decided to compare 4 with 3, since it clearly requires
additional code.
Junctions of interest are 6,10,11,13

Junction 6
We can see this is not a concern at the moment, but it will become issue
further down the line...

Junction 10
This is the associated else of junction 6.
So we clearly know we need to take action here.
We can see however it has entered Junction 11.
It clearly should not be here since we had expected the counter to have
increased by 1 as part of the newly introduced code above.
So, my first step will be to increase the counter in new junction 15.

Upon doing this

My outputs were automatically looking to take on more meaning, however
now I had to address the disconnect between 4 and 3.

TEST CASE: Investigating the pathway between 4 and 3

The following need to be traced

Junction can be avoided since it is the main block of code where there are no
influences on the start and end....

I have introduced this code above Junction 10, however it has disrupted the
output:

TEST CASE: Checking the junctions again:
So I will now try to investigate again between the Junction 15 (note I have
renamed this to new junction 17 since I had counted other existing incorrectly)
and up to the point whre it performs 'Checking 3 with 4'

It can be seen that I performed counter++ in junction 18, it has prevented it
from entering here since it relies on counter==0

So I will remove the counter increment as part of Junction 18 (Note this
appears higher in the code than junction 17).
I have also had to include in Junction 19....

I can see my outcome is looking better. I just need to investigate now the start
for 3->5. We know this would occur once it has written 5->3 onwards....

But in reality there is absolutely nothing wrong with this, since it is investigating
from the same point onwards....

So I will try extending the array above to something more adventurous:

TEST CASE:

I can see it has adapted to the longer flow of ascending numbers....
I can see it has not handled the 9 and 8 correctly.
It has kept them as standalone.
My logic immediately tells me there are few areas I have not addressed.
I know I included condition nums.length()-2 (this would include the number
9)....

So once again, I will not overcomplicate anything and just follow the junctions
(once it has written 3-> 6 onwards).

TEST CASE: Investigating impact of Junction 6, 7 and 8 on the incorrect writing
of standalone numbers

We can see all the execution has been done here.
We can see it is in right area since the else statement at top states its not
consecutive match.... This is correct analysis of numbers 9 and 8.
And we know if we had the standalone code of ascending, it would have
performed the same operation of writing two standalone numbers.
However if we had the standalone code of descending numbers, it would have
written 9->8.
So we need to place this logic of descending in this area of code..... Since the
else statement has recognised that its not ascending sequence at moment.

I have introduced this code and created another if else

This is now looking very functional...
The next logical extension would be to place the last two numbers as
ascending.

TEST CASE: Switching last two numbers as ascending.....

So now we know if number at nums.length()-2 is the start of the counter... It

will always perform a merge UNLESS if both numbers are the same......
I will quickly give this a try.....

TEST CASE:

It is all looking good, so now I think I am in a position where I can be more
explorative:

TEST CASE:

It has started ok, but then it has failed 7->6 35->34

I am now going to explain less, but use the same troubleshooting techniques

It can be seen that it has only performed two standalone single write into the

 list....

I expected it to have taken action to write 7->6 once it had performed 6->10

We have to remember in above test cases which passed, I focussed on the
descending scenarios at the start and at end of the array.

Now I am presented with 7->6 and 35-> 34 which occurs between mid way
and before nums.length-2

Logic above tells me to look at Junction 13. I do not believe I had taken
remediation coding here before....

I believe I need to perform a check here for descendance:

I applied this code:

But it has had a massive impact on the outcome, we can see that it has
removed numbers off the output altogether (7,35)

For the moment, I am rolling back this change....

TEST CASE:

I desperately need to understand what is really going on in the else statement
on line 196...
I will need to add a written summary on top.....
I can safely write the following:

k!=0
k!=nums.length-2
counter==0
not consective number (nums[k+1] ascending by 1 from nums[k]

It gives me every reason to believe I should be able to implement logic in
here.

This only gives me one option without sabotaging my entire code, I am forced
to write the start->end and await the outcome.

I have now performed the following operation:

I can see there are still standalone being written (6) and (34) upon closing the
range...
Before I try to remediate this, since my approach above was improvised, I will
try to modify the array so that it extends the descending summary range.

TEST CASE: Using similar array but extending the descending sequence

It can be seen that my choice of writing the start and end was not the correct
choice AT ALL in Junction 21... Perhaps I can avoid writing the values. Instead I
can just obtain new start and end values...... This is of no use...

Ultimately I do not want the logic to check for any values already written in the
list since these are taken to be final...

So I have chosen to store this range (7->6) and (35->34) in a temp variable..
I then have to see the flow in code which performs (34->33)

My mindset suggests I will need to keep updating the temp variable until it is
ready to write the correct descending range...
I am really unsure how else to remediate...

TEST CASE: Creating temp variable to store value and also ascertain when it has
to finalise the write into the list

Note it is in the exact same junction 21....
We can see that the start and end get overwritten. The start will become 6 and

end will become 5...
This is total wrong...
Perhaps we need a check here to see if there is NO content within temp...
If there is none... Then:
start will be 7 (this could be a variable called backupStart)
It is difficult to know end, since there could be another descending after 5.
We would also need to ensure that temp is cleared everytime the counter is
increased.....

TEST CASE: Running with above logic implemented....
It can be seen it has captured the ongoing descending range.. It is a case of
now adding this into the code as part of junction 6, 10, 11 or 13.....

I have implemented the following code, and it appears to have given correct
output:

For now, I will just accept that the entire range is written out in full. But main
worry is the disappearance of the following (see underlined red below)…

I will quickly check in Junction 8 to ascertain if there is a value in temp and if
there is, ensure it is written into the list.....

I have now added this code...

Output is as follows, I am getting extremely close to the finish line now...
However this is the only real issue, so I will identify where the standalone
number is written...

I have added the following code:

Now before I run exhaustive tests, my only concern is to tidy up how temp is
growing since the summary range should be in notation X->Y
I have performed this by tidying up code in lots of area...
I am now ready to run an exhaustive test...

TEST CASE:

This is almost a perfect execution

However we can see that it has dropped the 7 and it has also dropped the 47
I am hoping these can be identified quite quickly...

I have first quickly changed the 7 to a 9, and the output captures the
standalone 9....
So the issue is clearly with it interfering with the ascendency and
descendance transition ONLY

I have had to implement logic to identify if there is a transition number, it will
clearly be shown in my code.....
This will ensure that

5->7 and 7->5 is captured and
44->47 and 47->44

TEST CASE:
I have made a significant amount of changes and including this as new code.
called transition number..
It appears it has captured all the transitions and lost no data....

Only way forward now is to include more standalone numbers in between and
try this a bit more, mixing up the ascending and descending......

TEST CASE:

It has made a mess of the situation, there are several ranges missing and
standalone numbers missing

I am going to comment out bits of my new code (in relation to
transitionNumber) and see the outcome...

We can see it is much closer.... So I need to take another approach... the errors
are highlighted below......

I think I need to take another re-visit and identify the standalone storage for 3
and determine if sufficient validation to perform 4->3
I believe my code is fairly robust and I didn't think I really required all the
additional logic, so I glad I had opportunity to comment out logic in relation to
transition number.....
I can also aim to address the multiple storage for 2->4

I have roll back slightly and re-applied the logic again...
I am taking my code through ALL test cases in my code so far...

I also need label all the junctions in my code, I will NOT change any junction
numbers labelled so far (otherwise it will make it difficult to follow my
documentation so far), I will increment from the current highest.....

*********THESE ARE ASCENDING TEST CASES********************
TEST CASE:

Junctions 38,2,6,18,10,11,24,12,3,5,34,36,14,25,30,32,13,4

TEST CASE:

Junctions 1

TEST CASE:

Junctions 1

TEST CASE:

Junctions 2,38,3,5,6,18,10,34,36,14,7,9

*********THESE ARE DESCENDING TEST CASES (REVERSE OF ABOVE*****

TEST CASE:

Junctions
2,6,18,19,11,24,17,6,18,10,34,36,14,25,30,32,13,25,21,26,28,29,7,20a,222,23,
8

TEST CASE:

Junctions: 1

TEST CASE:

Junctions: 1

TEST CASE: FAIL
It can be seen that it has missed out number 2 which should be standalone. I
will quickly analyse the area of code.

Junctions: 2,6,18,10,11,24,12,18,19,25,21,26,28,25,30,31,7,20a,20

This all seems ok

It can be seen that it has stored the range in temp, but it has not had
opportunity to write this before.... 1->0
I will follow all the junctions between these two points (highlighted in yellow)...

It can be seen that in this area of code (JUNCTION 6, 7, 20a, 20), there is
currently no provision to check status of temp and write that range in...
This has to be the priority before writing 1->0

My instinct suggests that this code (if statement below), is not really an
association for the else of the if above, so I am going to move it above if
counter==0

TEST CASE: Performed again with code adjustments: PASS

TEST CASE: I will quickly run through test cases above again to ensure no
disruptions... Also please note that Junction 22 has now been removed as a
result of this move..
NOTE: THESE ARE ALL IN MY FINAL CODE

**** These were developed during my early testing to ensure it passed
through Junction 8

TEST CASE:

Junctions 2,38,5,3,6,18,10,34,36,14,34,36,7,20a,8,24

TEST CASE:

Junctions.............................

TEST CASE:

Junctions..................

TEST CASE:

Junctions:............

//Merging both ascending and descending code, there were used massively
during this test documentation....

TEST CASE:

Junctions:………………………………………………………….

TEST CASE:

Junctions:..........

TEST CASE:

Junctions:..........

TEST CASE:

Junctions: ...

TEST CASE:

