Further extension to new chatGPT data set

Inline with the failed execution of data (as per excel document:
30032025/SummaryRange/5/4/Output.xlsx

TEST CASE: Due to failed test case such as below, | revisited logic in my code

CHECKING: 48.1 with
48.199997

48.8

6liriting Standalone:
CHECKING: 35.1 with
35.199997

35.0

CHECKING: 35.2 with

35.3 with
35.399998
35.2
28Writing range: 35.1
Establishing start:
CHECKING: 35.2 with
35.3
35.1000
CHECKING: 35.1 with
35.199997
5.8

2Writing range: 35.3-> 35.1
CHECKING: 85.6 with 85.5
85.7

85.5

28Writing range: 35.3-> 85.6
Establishing start: 85.6
CHECKING: 85.5 with 85.4
85.6

85.4

CHECKING: 85.4 with

85.5

85.3

CHECKING: 85.3 with

85.4 -out.pri (: oy
85.200005

CHECKING: 85.2 with

85.299995

1 §

(counter

if (isFirstOccurenceAscendingChainNoTransition || isFirstOccurenceAscendingChain)

2Writing range: 85.6->
CHECKING: 19.6 with 19. "+ start);
19.7

19.5

CHECKING: 19.7 with

19.800001 CHECKING: 35.1 with 35.2

19.6 35.199997

CHECKING: 19.8 with 19. 35.0

19.9 This is start: 4@.1

19.699999 1BUT ACKNOWLEDGED START: 35.1
*#r+r24eicFirstOccurenceAscendingChainNoTransition*****: set to true
CHECKING: 35.2 with 35.3

CHECKING: 19.9 with
20.0
19.8
CHECKING: 20.0 with

35.3

35.100002

This is start: 35.1
20.1 DO NOTHING®++#+++ 55 bansssss
19.9 2BUT ACKNOWLEDGED START: 35.1
28Writing range: 85. *=xz2=22icFirstOccurenceAscendingChain®**=: set to true (. -1] + difference)) <epsilen)
Establishing start: CHECKING: 35.3 with 35.2
CHECKING: 19.9 with 35.399998
20.0 EL
19.8 28Writing range: 35.1-> 35.3
CHECKING: 19.8 with 63.5
19.9
19.699999

3Writing range: 20.8-> 19.8

599Mriting standalone: 63.5

[40.1, 35.1-535.3, 35. .6, 85.6-385.2, 85.6-320.0, 20.8->19. 1sFirst
isFir

WE CAN SEE THE SAME OVERLAPS
SSUE RESOLVED

KEY

As oppose to make any other changes to my code, | will re-run the code again and
populate excel workbook

TEST CASE: Check Excel data (PASS)

Now my only other concern was the following, so | will quickly generate a few personal

test cases with these

outcome...

..... And then | will just merge them up in various order and see the

Since neither of my ChatGPT data consisted of two consecutive ascending or

descending, | will put some emphasis on this also...

TEST CASES DERIVED FROM HERE:

My dataset should be able to sustain these scenarios

Ascending Ascending Ascending ’KEY
| overlap |
Ascending Ascending

qDescending

Ascending b

Descending H»Ascending

AscendingH Descending

Descending

Ascending H.Descendingﬂ;\scendmg

My dataset should be able to sustain these scenarios

Descending | |Descending | | Descending KEY
i |0ver\ap I
pescending Descending H|Ascend\ng
Descending Ascending HDescending
Descending Ascending Ascending

Descending |H Ascending H Descending

TEST CASE:

[3.5-53.6, 3.5->3.6, 40.0, 4.1, 56.2->56.3]

CHECKING: 3.5 with 3.6

3.6 This is ak
3.4 S
58Writing range: 3.5-> 3.6
CHECKING: 3.6 with 40.0
3.6999998

3.5

11Writing range: 3.5->3.6
CHECKING: 48.8 with 4.1
48.1

L

6Writing Standalone: 40.9
CHECKING: 4.1 with 56.2
4.2

4.0 isFirstOccurenceAscendingChainNoTransition=false;
6Writing Standalone: 4.1

CHECKING: 56.2 with 56.3

56.3

56.100002

98Writing range: 56.2-» 56.3

[3.5-»3.6, 3.5->3.6, 40.8, 4.1, 56.2-356.3]

CHECKING: 48.6 with 65.ﬂ CHECKING: 67.3 with 7.7
48.699997 67.4
48.5 67.200005

11lWriting range: 48.2->48.6 11lWriting range: 91.8->67.3
CHECKING: 7.7 with 49.6

if (isFirstOccurenceAscendingChainNoTransition || FsFirstUccurenceﬂscending(hain)

I
L

isFirstOccurenceAscendingChain=false;

isFirstOccurencelscendingChainNoTransition=fz
sm.add(start+"->"+end);

m.out.println("11Writing range: " + start+"->"+end);
isFirstOccurenceAscendingChain="fal

isFirstOccurenceAscendingChainNoTransition =false;

I will now try the next scenario:

TEST CASE:

CHECKING: 3.5 with 3.6

EN

3.4

58Writing range: 3.5-> 3.6
CHECKING: 3.6 with 48.8
3.6999998

3.5

CHECKING: 40.0 with 4.1
40.1

39.9

GWriting Standalone: 40.0
CHECKING: 4.1 with 40.8
4.2

4.0

98Writing range: 4.1-> 40.0
[3.5->3.6, 40.0, 4.1->48.0]

** Process exited - Return Code: @ **

Math.abs(nums[k] - (nums[k-1] + difference)) <epsilon)

valueOf (nums[k-1]);
ralueOf (nums[k+1]
sm.add (start+"->"+end)
out.println("9876Writing ran t + end);

ralue0f (nums[k+1]
valueOf(nums[k]);
sm.add(start " d)
out.println
isFirstOccurenceAscendingChain

1 + difference)) <epsilon))

println("%
valueOf (nums[k]);

" + start);
start

sm.add(star
" + start);

[3-5->3.6, 40.0, 4.1, 40.0]

TEST CASE:

CHECKING: 3.5 with 3.6
3.6
3.4

58Writing range: 3.5-> 3.6

CHECKING: 3.6 with 3.5

3.6999998

3.5

Establishing start: 3.6
CHECKING: 3.5 with 3.6

3.6

3.4

3Writing range: 3.6-> 3.5

** Process exited - Return Code: @ **

TEST CASE:

TEST CASE:

CHECKING: 3.5 with 3.4
3.6

3.4

Establishing start: 3.5
CHECKING: 3.4 with 3.0
3.5

3.3600082

2Writing range: 3.5-> 3.4

CHECKING: 3.@ with 2.9
3.1

2.9

Establishing start: 3.8

CHECKING: 2.9 with 4.5

3.8

2.56000082

2Writing range: 3.8-> 2.9

CHECKING: 4.5 with 4.6

4.6

4.4

SRR A S A AT R R AR R AP R A A R M AR AR R e AR AR
Writing Standalone: 4.5

B83Writing Standalone: 4.6 BUTWE KNO
[3.5-73.4, 3.8->2.9, 4.5, 4.6] PENULTIMAT

start i
sm.add(star

t appears the decis s eit

Since the above shows 2.9f should not have any influence on processing last
two numbers

have changed the loop to as follows

abs(nums[k] - ums[k+1] - difference)) <epsilon))

out.println
valueof(nums[k]);

tanda

g.valueof (nums[k]);

.valueof(nums[k+1]);

"+ start +
isFirstoccurenceAscendingChain=
isFirstOccurenceAscendingChainNoTransition

[3.5-3>3.4, 3.8->2.9, 4.5-34.6]

W
E NUMBER

TREACHES HERE ON

11

TEST CASE:

CHECKING:

ER

3.4

Establishing start: 3.5

Writing rang
CHECKING
3.6

.5 with 3.4

3.4

SWriting range:

3.6
3.a
** process exited - Return Code: @ ** s8uriting range: 3.
CHECKING: 3.6 with

if (counter.
{
(isFirstOccurenceAscendingChainNoTransition || irstoccurence
valueof (nums[k])
sm.add(start+"->"+end) ;
tem.out.println(“28wWriting rang
isFirstoccurenceAscendingChain=fal

isFirstOccurenceAscendingChainNoTransition

stem.out.println("IN

endingChain)

TER VALUE: " + counter);

ite
em.out.println("3121kriting range:
sm.add(start+"->"+end);
.valueOf (nums[k+1]
7.valueof (nums[k]
_out. printlin(Writing range:

+ start + > " + end);

sm.add(start+"->"+end) ;

em.out.println("2Writing ran

sm.add(start+"->"+end);

.4, 3.4-»3.5, 3.5->3.4]

Due to the above extremely awkward adjustment, | have now created a test case below which delays the
inception of the two digit descending which moves into ascending and then descending.

TEST CASE:

[3.8, 2.7, 2.5-32.4, 2.4-32.5, 2.4->4.@]

e can see things have not gone to plan..
So I want to quickly undo the change | did above... It will give me idea straight away of the root cause

Undoing change of previous test case... We are worse off so | have re-instated the logic again...

[3.08, 2.7, 2.5-22.4, 2.4->4.8]

Although it looks improvised, | still think it’s a controlled change given unique circumstances

IN THIS SECTION IF THE NUM[k] and NUM[k+1] ARE ASCENDING SEQUENCE

This is counter at the momen 1

It is not possible to trigger hasTransition if counter is @ since can not see transition in oppesite direction
COUNTER VALUE: 1

3121Mriting range: 2.5-> 2.4

riting range: 2.4-> 2.5
3hasTransition set back to false
CHECKING: .5 with 4.0
2.6

if (Math.abs(nums[k] - (nums[k-1] + difference)) <epsilon)
{
alueOf(nums[k-11);
valueOf(nums[k+1]);
sm.add(start+"->"+end);

2.4
IN THIS SECTION IF THE NUM[k] and NUM[k+1] ARE ASCENDING SEQUENCE
liriting range: 2.4-> 4.8

.out.println("9876Writing range:
[3.8, 2.7, 2.5-3>2.4, 2.4-3>2.5, 2.4->4.8]

** Process exited - Return Code: @ **

THERE WILL BE NO LOGICA
FORTUNATELY ith

.abs(nums[k] - (nums[k+1] - difference)) <

vill n ->
m.out.println(range: "
sm.add (start+"->"+end);
.valueOf (nums[k+1]
ng.valueof (nums[k]
y m.out.println(g range: "
sm.add (start+"-:

t is almost perfect but it dropped off the

standalone number at end 4.0f. | believe

e way to achieve this is to create an

ted else statement.. But there is
ff

<5

[3.0, 2.7, 2.5-52.4, 2.4->2.5]

| Change made addec

o

code

includeStandalone

star

sm.add(start);

stem.out.println("Including standalone due to configuration such
em.out.println("SWriting standalone: " + start);

tandalc-n

Including standalone due to configuration such as: 3.ef,2.7f,2.5f,2.4f,2.5f,4

SWriting standalone: 4
[3.0, 2.7, 2.5-32.4, 2.4-32.5, 4.8]

TEST CASE:

CHECKING: 3.5 with 3.4
3.6

3.4

HEREEEEE

HERE!!!!

IN HERE!!!!

Establishing start: 3.5

CHECKING: 3.4 with 3.5

3.5

3.3600002

This is counter at the moment: 1

It is not possible to trigger hasTransition if counter is @ since can not see transition in opposite direction
COUNTER VALUE: 1

3121Writing range: 3.5-> 3.4 his will always e

9846Writing range: 3.4-> since it assumes there is

value of next one ascending

last index array: 5 So | have stored the startin a potentialfurtherAscendingBeyondThisStart = start;
3hasTransition set back to false s ate va potentialfurtherAscendingBeyondThisEnd = end;

CHECKING: 3.5 with 3.6

EN 3

3.4

This is counter at the moment: @

It is not possible to trigger hasTransition if counter is @ since can not see transition in opposite direction
CHECKING: 3.6 with 32.1

3.6999998

3.5

This is counter at the moment: @

possible to trigger hasTransition if counter is @ since can not see transition in opposite direction
1lWriting range: 3.4->3.6
CHECKING: 32.1 with 32.2

e it S
32.199997
1999998 correct discounting the already
. above insertion.. So | have had
1992Writing range: 32.1-> 32.2 the start value from

[3.5 .4, 3.4-»3.5, 3.4->3.6, 32.1-332.2]

And if there is a circumstance like this that the ascending streak
continues.... it will get stored variable start... And we know the
end it would calculate correctly

em.out.println(“using stored start”);

sm.add(potentialfurtherAscendingBeyondThisStart+"->"+end

1.out.println(1Writing rang + start+

sm.add(start+"->"+end);
em.out.println("1541Writing range:

[3.5->3.4, 3.4-»3.6, 32.1->32.2]

I have now gone through all those diagrammatic interpretation of ascending and
descending..
I will just merge a few now quickly and see the outcome.

TEST CASE:

CHECKING: 3.5 with 3.6
T

3.

This is counter at the moment: @

It 15 not possible to trigger hasTransition If counter is @ since can not see transition in opposite direction

HEREEEEE
HERET 111

R
Establishing start: 3.6
CHECKING: 3.5 with 3.6

This is counter at the moment: 1
It is not possible to trigger hasTransition if counter is @ since can not see transition in opposite direction
cou

CHECKING: 3.6 with 3.5

HEREEEEE

HERET111

IN HERE! 11
Establishing start: 3.6
CHECKING: 3.5 with 3.4
3.6

2.8

f
&8& !(potentialfurth
53 We know values would have been
This is counter at the mment: 2 continued to extend from point it w.
It is not possible to trigger hasTransition if counter

if (!potentialfurtherAscendin i t otentialfurtherAscendingBeyondThisEnd.equal
{
.out.println(’
Extoblishing stort: 5.0 add(potentialfurtherAscendingBeyondThisStart: potentialfurtherAscendingBeyondThisEnd) ;
ciecknie: 2.9 with 2.5 s ut . println("19
potentialfurt] endingBeyondThisEnd

This is counter 3t the mment: 1 potentialfurtherascendingBeyondThissta
It is not possible to trigger hasTransition 1f counter is 8 since can not see transi ;

TEST CASE:
| think its sensible to try the sample test cases with overlaps..
If satisfied, | can then try similar style..

CHECKING: 3.4 with 3.5 [3.5->3.4, 3.4->3.5, 3.4->3.6, 32.1->32.2]

3.5

3.3000002

This is counter at the moment: 1

It is not possible to trigger hasTransition if counter is @ since can not see transition in opposite direction
COUNTER VALUE: 1

3121Writing range: 3.5-> 3.4

777777777777777777777777777777777777 Stored start -> end: 3.4->3.5

value of next k: 2

last index array: 5

3hasTransition set back to false

CHECKING: 3.5 with 3.6

using stored start

19731Writing range: 3.4->3.5

EN

1.4 Tl ce ca o narrow down case for its execution since
ums[k+1] <= stored Start

This is counter at the moment: @

It is not possible to trigger hasTre
CHECKING: 3.6 with 32.1

3.6999998

3.5

This is counter at the moment: @

It is not possible to trigger hasTransition if counter is @ since can not see transition in opposite direction
1541Writing range: 3.4->3.6

CHECKING: 32.1 with 32.2

32.199997

31.999998

1992uWriting range: 32.1-> 32.2

if (lpotentialfurther; AdThis e t seyond a dingBeyondThi:

entialfurther:
potentialfurtherascer

[3.5-»3.4, 3.4-»3.6, 32.1->32.2]

I am going through all my test cases right from the top of declarations...
These are all scenarios related to 0.1f
| will document failed instances and aim to fix it

TEST CASE:

/lit performs 47.3->47.4, 47.3->47.5

Note this test case has even failed on my most original code which passed with
ChatGPT, so its clear this sequence was not even present in my data

/147 .3f, 47 .41,47 .5f //\ate fixes in code - FAIL (thisis straight forward ascending) -

FAIL************

NOW FIXED AS BELOW

I will now quickly try quicker ascending

CHECKING: 47.3 with
47.399998
47.2

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: Index -1 out of bounds for length 2

at Solution.summaryRanges(Solution.java:323)

at Solution.main(Solution.java:12@)

This should hopefully be a straightforward fix
| have accommodated in this section.

-out.println("T

if (nums.length==2)

{
st ~walueof

printin(" ting range, only cending numbers in array: " + start + "-» "

CHECKING: 47.3 with 47.4
47.399998

s counter at the moment: @

not possible to trigger hasTransition if counter is @ since can not see transition in opposite direction

SsMriting range: 47.3-> 47.4
CHECKING: 47.4 with 47.5
47.5

47.300003

SETTING VARIABLE has
9876Mriting range: 47.
TRACK12

K1

E]

[47.3-347.4, 47.3->47.5]

find it extremely odd that one of the most s
having tried th

believe | have completed this logic on another area of cod

w failing... So | will try to resolv nfac!
se of the length of
eed to make a copy in tl

@

Sy out.println

sm.add(start:

end valueOf (nums[k+1]);
valueof(nums[k]);

potential furtherAscendingBeyondThisstart = start;
potential furtherAscendingBeyondThisend
ad start -> end: " + start + "->" +

+ (nums.length-1))

have now modified this section
and prevented the writ

ply he
.abs(nums[k] - (nums[k+1] - difference)) <

.valueOf (nums[k
alueOF (nums[k+1

potentialfurtherAscendingBeyondThisStart =

potentialfurtherAscendingBeyondThisEnd
n.out.println(” Storeh start -> end: " + start + "->" + end);

1tln(it " t+ "
isFirstOccurenceAscendingChain
isFirstOccurenceAscendingChainNoTransition =false;

tis now fixed, and | have tried several sets of ascending
[47.3->47.5] numbers and it has passed

Since this is a critical check, | will run through all my test cases below and see the
impact...

@
7]
7]

//FAILED TO WRITE THE STANDALONE AT END
//this is second chatGPT extract
30032025/SummaryRange/5/4/ChatGPTgeneratedNumbersBetterDataSet.txt

75.0f, 75.0f, 95.6f, 95.7f, 95.8f, 95.9f, 96.0f, 96.1f, 40.1f, 40.1f

//it has missed out the middle ascending
3.5f,3.6f,40.0f,40.1f,40.f //ascending ascending descending FAIL

It has not written what it has stored (2.4->2.5) and also 4.0f
3.0f,2.71,2.5f,2.4f,2.5f,4.0f //exploring above scenario but the descend is slightly longer
***EAIL

//it has written 2.5 -> 2.6 at end and not 2.4->2.6
3.0f,2.7f,2.5f,2.4f,2.5f,2.6f

I have now resolved but will once again go through all failed test cases....
infact it might be good idea to go through all test cases at critical change...

CHECKING: 2.4 with 2.5

2.5

2.3000002

TRACK1

This is counter at the moment: 1

It is not possible to trigger hasTransition if counter is @ since can not see transition in opposite direction

COUNTER VALUE: 1

3121Writing range: 2.5-> 2.4
e Stored start -> end: 2.4->2.5
value of next k: 4

last index array: 5
3hasTransition set back to false
CHECKING: 2.5 with 2.6

2.6

2.4

TRACK1

TRACK2

TRACKS

TRACKS

TRACKS

SETTING VARTABLE hasMissedlLastNumber
WRITTEN PREVIOUS-

€098Writing range:

TRACK12

K 4

[

[3.e, 2.7, 2.5-3>2.4, 2.5-32.6]

ould be potentialfurthe
oppose to 2.5->2.6

endingBeyondThisStart = 2.4

am also beginning to dLasthumber
see that all logic about
hasM LastNumbe
r appears to be flawed
ogic since it is totally

if (writtenPrevi

rcumstance

ange: " + start + "> "

sm.add(start+"->"+end);
em.out.println(ange: " + start + "

I have unfortunately seen this test case fail as a result:

nding standalone

start valueOf(nums[k-1]);
end=5tring.value0f(nums[k+1]);
sm.add(start+"->"+end);

out.println{"9876Writing range: " + start + "-> "

tialfurthera ingBeyondThisStart=
potentialfurtherAscendingBeyondThisStart=

This is totally unrelated, | have explored this area and it has fixed the issue:

CHECKING: 3.5 with
3.6

3.4

TRACK1

This is counter at the moment: @

to trigger hasTransition if counter is @ since can not see transition in opposite direction

Stored start
CHECKING: 3. i 46.8
3.6999998
3.5
TRACK1
This is counter at the moment:
It is not possible to trigger hasTransition if counter is since can not see transition in opposite direction
CHECKING: 48.8 with 48.1
48.1
3%.9
TRACK1
This is counter at the moment: @
It is not pessible to trigger hasTransition if counter is @ since can not see transition in opposite direction
CHECKING: 48.1 with 48.@
48.199997
48.8
HEREEEEE
SWriting range: 48.1-> 40.0
[40.1->40.8]

use the stored
values at any
point.. For now
could not think of
any other condition
since there is lots
of code depending
on this

found it was not going into area to ed v
had loop set to if (k==0)... we know this is not th

nums. length-1)

I think it is now extremely critical | go through all my devised cases also include the

ChatGPT extract or even try larger section of this code....

[3.5, 49.8->48.1, 48.1-348.8]

I have rolled the change back:

| have gone through all my test cases again...

These are failing occurrences...

I am still very sure these can be modified without impacting the main flow in chatGPT

| will take each turn by turn...... and |l really need to understand why it differs from the
passing ones... otherwise it will be a total spiral.

//ADDRESS***********************************

//3.0f,2.71,2.5f,2.4f,2.5f,4.0f //exploring above scenario but the descend is slightly
longer ***FAIL**********

if (writtenPrevious}

y .out.printlng”s1: 5
.add(potentialfurthe i 3} potenmtialfurtherascendingBeyondThisEnd);
t.printlng 5 "-x"+end);
tenPrevio
potentialfurtheras:
potentialfurtherascend

iting range: " + start+"->"+end);

.out. primtlng
Lout.println("Th

[3.@, 2.7, 2.5->2.4, 2.4-3>2.5, 4.8]

Before | address the rest, | can see | have used technique to accommodate for the last
number as standalone..

A few test cases earlier, | had code for this circumstance. And ironically we can see it
was to handle the situation that | just fixed...

I am going to quickly run through my test cases and ascertain how many cases are
actually relying on this. It now seems like poor practice given how | managed it better
above....

ng.valueOf (nums[k+1]);

ut.println("s iriting standalone: ™ + start);

There is no code reaching here, so | have removed all logic surrounding this

//3.5f1,3.6f1,40.11,4.1f,40.0f //ascending standalone *****FAIL after certain fix

CHECKING: 3.5 with 3.6

EN-

3.4

TRACK1

This is counter at the moment: @

It is not possible to trigger hasTransition if counter is @ since can not see transition in oppesite direction
- --5tored start -> end

CHECKING:

3 999!

TRACK1

This is counter at the moment:

CHECKING: 40.8 with 40.1

48.1

E

TRACK1

This is counter at the moment:

It is not possible to trigger hasTransition if counter is @ since can not see transition in opposite direction
CHECKING: 4@.1 with 46.0

48.199997

48.0
HEREEEEE

SWriting rang
[40.1->48.0]

;.valueof (nums[k])

out.println("Thi
out.println("It

] - difference
] + difference

1] + differe
1] + differe

endingeeyondThisend) ;

potentialfurth
potentialfurth

[3.5-33.6, 40.1-340.0]

We can see it has still failed to write 40.0->41.0
I am going to visit my outputs as usual

I am going to go through all my test cases again, the fact that | am outputting more
screen outputs suggests itis becoming extremely difficult to remember the paths...

TEST CASE:

3121riting range: 3.
counter at the moment: ©

le to trigger hasTransition if counter on in opposite direction

Kinums. length-2
State of writtenprevi

ftion in opposite direction

HEREEEEE

CHECKING: 40.0 with 40.1

E
TRACKL

k!nums. length-2
s :

im
s(nums[k] - (nums[k1] - differ

tring. valueof (nums[k])
saluedf (nums[k+1])

tialfurtherAscendingBeyondThisStart = start;
alfurtherAscendingBeyondThi sEnd d;
out.println(”11111111---

>" + end);

endingCha
stOccurenceAscendingChainoTransition

entialfurtherascendings

[3.5-»3.6, 40.0->40.1, 40.1-)40.0]

I am now going to visit the test cases below which were identified to fail.

And it has damaged my logic massively
So | need to roll back my documentation unfortunately....

//3.5f,3.6f,40.0f,40.1f,40.f //ascending ascending descending FAIL

//3.5f1,3.6f,40.0f,40.1f,56.2f,56.3f //ascending ascending ascending ***FAIL after
certain fix

/175.0f, 75.0f, 95.6f, 95.7f, 95.8f, 95.9f, 96.0f, 96.1f, 40.1f, 40.1f

//************************FAIL

