It now fails in these test cases on top, the reason is straight forward..

It happens in the section when it performs descending, ascending,descending

or ascending, descending, ascending... this is linked to my change above and | will try to
factor more logic init.

Itis an area of code which heavily gets entered into.

| feel | am fairly close to final outcome...

TEST CASE:

Without even looking at this too deeply, we can see it has decided to drop the
3.4->3.5
| am sure it has entered in the section of code written

CHECKING: 3.5 with 3.4

3.5

3.6

3.4

HEREEEEE

HERE!!11

IN HERE!!!!
Establishing start: 3.5
CHECKING: 3.4 with 3.5

3.5

3.5

3.3000002

TRACK1

This is counter at the moment: 1

It is not possible to trigger hasTransition if counter is @ since can not see transition in opposite direction

COUNTER VALUE: 1 S

3121Writing range: 3.5-> 3.4
Stored start -> end: 3.4->3.5

5555553555555 5555555555555558355555583533358SSSCURRENT 1ist: [3.5->3.4]

value of next k: 2

last index array: 3

3hasTransition set back to false

CHECKING: 3.5 with 3.4

3.4

3.5
3.4 -out.println("%

- .out.println(potentialfurtherAscendingBeyondThisStar
e out.printIn(start);
3.4
3.4
Stored value also ascending 2

NO storage required

HEREEEEE

SWriting range: 3.5-> 3.4 sm.add(

[3.5->3.4, 3.5->3.4] .out.println(
isFirstOccurenceAscendingC H
isFirstOccurenceAscendingChainNoTransition =fa
b

** Process exited - Return Code: @ **

MWLM

I now get the correct result:

I will now try the other failed test case above:

TEST CASE:
It seems fine now

Af,3.0f,2.9F,2.5F,2.4f

, 3.5-3>3.6, 3.6->3.4, 3.8->2.9, 2.5-3>2.4]

I will just check all my test cases again, | do not think it will fix other failing cases, but |
want to be sure no others have failed..

In real world, | would also need to try this against the ChatGPT data again..

But since these small deflections do not occur in the data, there is no need

| have effectively now gone back to a test case which | tried to fix in my previous long
documentation, but since it had adverse effect, | rolled back a lot.
| have to take a fresh approach

TEST CASE:

[40.1, 4.1, 48.0]

Logic suggests it has to make a decision- before it writes the first standalone..
Like always, | will follow the logic

oo Stored start ->

3.6999998
ER-
TRACK:
This ounter at the moment: @
ble to trigger hasTransition is @ since can not see transition in opposite direction
.1 with 4.1
START: 3.5
3.5
EN
3.5
40.199997
40.0
TRACK1
This is counter at the moment: @
It is not possible to trigger hasTransition if counter is @ s
Ghriting Standalone: 40.1
CHECKING: 4.1 with 48.8
START: 4.1

"+potentialfurtherAscendingBeyondThisEnd) ;
dThisstarts”->"+potentialfurtherascendingBeyondThisEnd);

[3.5-33.6, 4.1, 40.8]

I will examine my other failed cases:

TEST CASE: This looks similar to above but we can see ascending followed by ascending

Itis ascending followed by ascending
| feel as if | will hit an issue since it might need to look further ahead than nums[k+1] and
I have not had to do this until now...

TEST CASE:
Also note even if | try there are issues...

So | will concentrate here....

Stored start -> end: 3.5->3.6
$555995589055599933999538 9990935588499 $ S PESFICURRENT Tist: []
CURRENT START: 3.5

3.6 with 48.0
START: 3.5

-6999998

-5

TRACK1

This is counter at the moment: @
It is not possible to trigger hasTransition if counter is @ since can not see transition in opposite direction
CHECKING: 4@.8 with 40.1

START: 3.5

3.5

3.6

3.5

48.1

38.9

TRACK1

TRACK2

TRACK BACK!!

TRACKS

TRACKS

TRACK9

1992Writing range:

[48.0->38.1]

if(!(potentialfurtherAscendingBeyondThisStart=="") && !(potentialfurtherAscendingBeyondThisEnd==

i
1

sm.add(potentialfurtherAscendingBeyondThisStart+ "tpotentialfurtherAscendingBeyondThisEnd);
S 1.out.println(22USING S
.out.println(ting 5 i - " + potentialfurtherAscendingBeyondThisEnd

.out.println(i " + start + "-> " + end);
isFirstOccurenceAscendil
isFirstOccurenceAscendingChainNoTransitiol

[3.5-33.6, 40.8-340.1]

So now | will run my other failed test cases

| can safely say it does not feel as if | will ruin any other logic, but | will run through my
test cases again.
I am now exactly down to two failed cases...

)6.8f, 96.1f, 48.1f, 498.1f

This tells me itis related to having identical numbers

Firstly | am going to resolve this issue as | envisage a quick fix...
TEST CASE:

2678Writing range, only two ascending numbers in array: 40.1-> 45.1
[48.1->45.1]

So |l can see | have flawed logic in my code, and hopefully | can resolve this readily.
I will add this to my failed cases

2678Writing range, only two ascending numbers in array -> a5, nums. length==2)
[40.1->a5.1]

lueOf (nums[k]);

sm.add(start+"->
.out.println ting range, only two ascending numbers in array: * + start + "-> "

if (nums.length==2)
r

if ((Math.abs(nums[k] - (nums[k+1] + difference)) <epsilon) || (Math.abs(nums[k] - (nums[k+1] - difference)) <epsilon))

tart:

ng numbers in array: " + start + "> "

"+ start);

" + start);

234Writing Standalone: 40.1

2348Writing Standalone: 45.1
[40.1, 45.1]

| have one more failed test case and then only ones left are the standalone repeat
numberissues...

Unfortunately number test cases have built up, but there is a pattern for lots of them.
If I run basic test case Ascend sequence and a standalone or ascending sequence with
ascending sequence it fails, so my focus will start here

My instinct tells me any changes might now break the code.....

TEST CASE:

CHECKING: 3.5 with 3.6

START: 3.5 [40.0->40.1, 56.2]

3.5
3.6
3.4
TRACK1
This is counter at the moment: @
It is not possible to trigger hasTransition if counter is @ since not see transition in opposite direction
CURRENT START: 3.5
Stored start -> end: 3.5->3.
FEESFPEEET PRSPPI ISIIFFPIPFFIEFSFPFFFFFFFFCURRENT list: []
CURRENT START: 3.5
CHECKING: 3.6 with 48.0
S5TART: 3.5

-6999998
.5
TRACK1

This is counter at the moment: @

E
E]
3.
E
E]

It is not possible to trigger hasTransition if counter is @ since can not see transition in opposite direction
CHECKING: 48.@ with 48.1

START: 3.5

3.5

3.6

3.5

48.1

35.9

TRACK1

This is counter at the moment: @

It is not possible to trigger hasTransition if counter is @ since can not see transition in opposite direction

CHECKING: 4@.1 with 56.2
START: 48.8

3.5

3.6

48.8

48.199997

48.0

TRACK1

TRACKZ

TRACK BACK!!

TRACKS

TRACKE

TRACKT

27Writing range: 40.8-> 48.1
4Writing Standalone: 56.2
[40.8->48.1, 56.2]

Clearly this is way too little information to make any sort of judgement since we know
we have to insert the stored value in the most suitable place..

I think it could have been completed anywhere in principle, but | have kept everything
fairly tidy which has assisted reaching here..

So | have created screen outputs in each area | believe the code has traversed...

CHECKING: 3.6 with 48.0

START: 3.5

3.5

3.6

3.5

3.6999998

3.5

TRACK1

K!=nums.length-2

"....Q'mIrTEN Ew

This is counter at the moment: @

It is not possible to trigger hasTransition if counter is @ since can not see transition in opposite direction
COUNTER NOT EQUAL TO @

NOT DESCENDING SEQUENCE

TEMP IS BLANK

LAST ITEM SMALLER OR NEXT ITEM BIGGER
next item is not larger

CHECKING: 40.0 with 40.1

START: 3.5

3.5

3.6

3.5

40.1

39.9

TRACK1

K!l=nums. length-2

#eses+22WRITTEN END

This is counter at the moment: @

It is not possible to trigger hasTransition if counter is @ since can not see transition in opposite direction
COUNTER NOT EQUAL TO @

NOT DESCENDING SEQUENCE

TEMP IS BLANK

LAST ITEM SMALLER OR NEXT ITEM BIGGER
NEXT ITEM IS BIGGER

NOT isFirstOccurenceAscendingChainNoTransition
CHECKING: 48.1 with 56.2

1.out.println(item is not 1la); //HERE
FirstOccurenceh: ingChainNoTrar on || isFirstOccurenceAscendingChain)

.out.println("One of deflection booleans are set™);
if (!potentialfurtherAscendingBeyondThisStart.equals(” ! (potentialfurtherAscendingBeyondThisE
out.println(“using stored start™);

sm.add(potentialfurtherAscendingBeyondThisStart
out.println(" Iriting range: " + star

[3.5->3.6, 0->40.1, 56.2]

| believe these are very massive changes in my code..
I will run through all my tests now and also ChatGPT data...

| found that in test cases such as this.

It was now performing 2.4->2.5 twice.

| realised whilst | was coding that already | had written to screen that | had written an
item out to the screen, | had not physically done this...

So linserted this code in...

But | found that it only had to perform this whilst k==

.valueOf(nums[k-11);
. valueOf (nums[k]);

0 I IM
sm.add(start+"->"+end);

em.out.println("eeeeeWriting range: " + start+"->"+end);

This fixed the issue that arose...

Also one other shortfall in ChatGPT data was not it did not have duplicate standalone
numbers. We can see how it could cause issues...

Stored start -» end: 96.8-:96.1
PR P PRSPPI P RIS E PSR S FPEEIFIFIFSFFSSCURRENT 1ist: []
CURRENT START: 96.8
CHECKING: 96.1 with 48.1
START: 96.9
96.8

if (nums[k]!=nums[k+1])

96.1

96.8

R A A A R R R R R AR R R R X

96.0

96.8

Y Yy

using stored start

9731Writing : 96.8->96.

19731Writing range 6.1 for (int k=8; k<nums.length-1;k++)
PRRLRRIRRI Rt i e L P LCURRENT LIST: [96.8-296.1] R

96.2

96.8

TRACK1

This is counter at the moment: @

It is not possible to trigger hasTransition if counter is @ since can not see transition in opposite direction
[96.0->96.1]

** Process exited - Return Code:

We can see that we don’t want it compare same number against each other.
But at the same time, we can not just forget it existed...

For instance something like this 40.3f,40.3f,54.5f

It would not be best if | miss the leading 40.3f

So | have created an else statement in my code to add this..

will ensur

.valueOf(nums[k]);

sm.add(start);
=m.out.println("e19 75Writing Standalone: " + start);

Infact | had to enhance the loop even further as follows, otherwise it would miss the last
number if it was same as penultimate

sm.add(start);
em.out.println("@7774544Writing Standalone: " + start);

1
J
start ralue0f(nums[k]);
sm.add(start);

em.out.println("@19 75Writing Standalone: " + start);

| also found | had to lock this section of code to nums.length>=3, otherwise for cases

such as

it would add stored value 40.0->40.1 and also again as below...

nums. length>3)

walueOf(nums[k-17%;

WHOLE LINE OUT A

sm.add(start >"+end);

n.out.println("eeeeewWriting range: " + start+"->"+end);

But | am not entirely sure about this but it relates to having used the stored area already.

So | tested code with my ChatGPT data, | found that it failed in exact same locations as
before:

| checked the duplicate information being written and it pointed me here.
My first instinct was to remove the content since | implemented it earlier.
It fixed my issues and it also fixed remaining issues in my code.

entialfur

So at the moment, it appears my code is fully functional with all my test cases and
ChatGPT. There was extremely strong value in having ChatGPT data as my reference...

