As always, late into testing. | thought of another test case as below.

TEST CASE:

FIEFFESEIEIESISIIFIEIISIIIIIIEIIIIIILFFEIETIFFCURRENT List:
CURRENT START: 3.5

WHEN-
CHECKING: 3.6 with 3.7
START: 3.5

3.5

3.6999998
ER)
TRACK1
K!=nums. length-2
FHEFEETHURITTEN END-
This is counter at the moment: @

It is not possible to trigger hasTransition
COUNTER NOT EQUAL TO &

NOT DESCENDING SEQUENCE-

TEMP IS BLANK

LAST ITEM SMALLER OR NEXT ITEM BIGGER

NEXT ITEM IS BIGGER

if counter is @ since can not see transition in oppesite direction

NOT isFirstOccurenceAscendingChainNoTransition

Previous number les:
WHEN
CHECKING:

next number greater

3.7 with 3.8
START: 3.5

K!=nums . length-2
FHASELISHRITTEN END-- 3.7
This is counter at the moment: ©

It is not possible to trigger hasTransition if counter i
COUNTER NOT EQUAL TO @

NOT DESCENDING SEQUENCE-

TEMP IS BLANK

LAST TTEM SMALLER OR NEXT ITEM BIGGER

NEXT ITEM IS BIGGER

@ since can not see transition in opposite direction

Previous number less, next number greater

o-
SWriting rang
[3.8->3.7]

- Return Code: ® **

EHriting rang:
HERE!!1!

| have added this code

scend
h.abs(nuns[k] - (nums[ks1] + difference)) cepsilon)

.out. printIn("HEREEEEE

backupstart-string.valueof(nums[k

_out.printIn("CO
if (counte (

(!(potentialfurtherasc I (potentialfurtherAscendingBeyondThisEnd

sm. add(potentialfurtherascendingBeyondThisstarts"->"nuns[k])

em.out.println(
n.out.println

(2

ting

ge:

USING STORED TO WRITE RANGE");

"+ potentialfurthera:

endingBeyondThisStart +

potentialfurthera:
potentialfurthera

endingBeyondThisstart
endingBeyondThisEnd-"

"+ nums[k]):

So now | have extended the test case to this and it fails..
TEST CASE:

2322USING STORED TO WRITE RANGE
97@5Writing range: 3.5-> 45.5
SWriting range: 45.5-> 45.4
3.8, 3.8-»3.7, 45.5, 45.5-3>45.4]

Previous number less, next number greater
WHEN

CHECKING: 3.8 with 3.7

START: 3.5

3.5

HEREEEEE
COUNTER IS 8- --

- -2322USING STORED TO WRITE RANGE

97@suriting range: 3.5-> 3.8
- 2320USING STORED TO WRITE RANGE

97@5Writing range: 3.5-> 45.5
SWriting range: 45.5-> 45.4
[3.5->3.8, 3.8->3.7, 3.5-345.5, 45.5->

SWriting range: 3.8-> 3.7
[3.5->3.8, 3.8-»3.7]

** Process exited - Return Code: @ **

Prriting range: 3.8-» 3.7

3hasTransition set back to false

.abs(nums[k] - (nums[k-1] + difference)) <epsilon) & (Math.abs(nums[k] - (nums[k+1] - difference))<epsilon))
{ s .out.println(“Previous number ext number g :
if (!isFirstOccurenceAscendingChain)
t
start= g.valueof (nums[k-11);
---2322USING STORED TO WRITE RANGE
705Writi 2 3.5-> 45.5 soes - -
riting range: ? isFirstOccurenceAscendingChain=tru
Writing range: 45.5-> 45.4

8-33.7, 3.5-245.5, 45.5

if (counter==6 && (k==nums.length-2)
I
{

(potentialfurtherAscendingBeyondThisStar ! (potentialfurtherAscendingBeyondThisEnd is Fir‘stl]ccur‘EnceAsr_endingchair{j

sm.add(potential furtherAscendingBeyondThisStarts” - > +nums[k]);

m.out.println(" 322USING STORED TO WRITE RANGE");

m.out.println(” 5 ti : + potentialfurtherAscendingBeyondThisStart + "-> " + nums[k]);
potentialfurtherAscendingBeyondThisStart="";
potentialfurtherAscendingBeyondThisEnd

TEST CASE:

Thisisincorrect, itis writing 3.5->3.6

| have a feeling that in every place where it does a double range write...
it has to look before it places the store value in for the state of

2025Writing range:
1992Writing range:
[3.5->3.8, 3.8->3.7,

;F(!(pqtentialfurthEPAscendingBeyondThiSStaPt=="” potentialfurtherAscendingBeyondThisEnd==" sFirstOccurenceAscendingChain)

[3.5->3.8, 3.8->3.7, 3.9->4.8]

I will now go through all my new test cases and existing test cases..

| am just worried about when to clear the isFirstOccurenceAscendingChain since | can
see in my code | have not set it to false on every time it uses the stored values...

| am not going to change my code blindly...

But I think | need to try lots ascending and descending small bursts in an array to
determine if code is ok..

TEST CASE:

combining lo

3.6f,3.7f,3.8F,3.7F,3.0f,4.0f,3.5f,3.6F,3.7F,3.8F,3.7F,45.5f,45_4f

3.5->3.8*

3.8->3.7*

3.5->3.8*

3.8->3.5*

3.5->3.8*

3.8->3.7*

3.9->4.0 (this is correct, in my data it has 3.5->4.0
3.5->3.8 *

3.8->3.7*

45.5->45.4*

This is in agreement with above....

[3.5->3.8, 3.8-»3.7, 3.5->3.8, 3.8->3.5, 3.5->3.8, 3.8->3.7, 3.9->4.8, 3.5->3.8, 3.8->3.7, 45.5->45.4]

| also tried and set my code with resetting the stored values and Booleans at every point

it made no difference. | do not want to implement changes without understanding for

now...

SWriting range: 45.5-> 45.4

[3-5->3.8, 3.8->3.7, 3.5-»>3.8, 3.8->3.5, 3.5->3.8, 3.8->3.7, 3.5->4.8, 3.5->3.8, 3.8-3>3.7, 45.5->45.4]

I will now try more test cases:

This is fine....

I will go through my test cases again.. And unfortunately
any cases which start with ascending are still giving issues...

I1***FAILS***

//3.5f,3.6f, 3.5f, 3.6f, 3.5f,3.4f,3.0f,2.9f,2.5f,2.4f //ascending descending ascending
descending descending descending

//3.5f,3.6f,3.5f,3.11,3.0f,2.9f //ascending descending descending
//3.51,3.6f,3.5f,3.6f //ascending descending ascending

//3.5f,3.6f,3.51,3.2f,3.1f //ascending descending descending

I know | fixed many cases similar from page 15 onwards which commence with
ascending..... but | can see in these cases, there was a transitional descent...

//1think the best option is to start with most basic failed case
TEST CASE:

5f

if(!({potentialfurtherAscendingBeyondThisStart ! (potentialfurtherAscendingBeyondThisEnd) && isFirstOccurenceAscendingChain)
P

> " + nums[k]);

potentialfurtherAscendingBeyondThisst

potentialfurtherAscendingBeyondThisEnd=

if (sm.isEmpty())
{
sm.add(potentialfurtherAscendingBeyondThisStart+”->"+potentialfurtherAscendingBeyondThisEnd);
ED TO WRITE

+ potentialfurtherAscendingBeyondThisStart + " " + potentialfurtherAscendingBeyondThisEnd);

| felt this was incorrect and too vague without reason.. So | followed code and
implemented here:

valueOf (nums [AscendingBeyondThisStart))

.out.println(” ng s start”);

sm.add (potentialfurtherAscendingBeyondThisStart +potentialfurtherAscendingBeyondThisEnd);
out.println(“197618Writing range: " + potentialfurtherAscendingBeyondThisStart+”->"+potentialfurtherAscendingBeyondThisEnd);

potentialfurtherAscendingBeyondThisEnd

em.out.println(nums[k]);
.out.println(nums[k+1]);
.out.println(potentialfurtherAscendingBeyondThisEnd);

All my test cases pass.

I am hoping its finally resolved issues.

The last phase of course is testing it against the ChatGPT data.
And it has passed against all the ChatGPT extracts.....

