Examining this test case:

It has completely misinterpreted.. It looks to be related to having two
entries for 3.8f

TICKER: SSA(2)
[3.8, 3.8-»3.8, 3.8->3.9]
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if (Math.abs(nums[k] - (nums[k+1] + differenc <epsilon)
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TICKER: D(6)S5 . -
TRESITEMESPSE | can see this has been missed out

Standalone numbers: 2 Ascending chains: @ Descending chains: 1 OTAL: 2




CHECKING: 3.7 with 3.6 - -
4.1 | will need to write to the store

4.8 irrespective if k==0. But we do not need
currently in list: [] to write if there is contents already in
Descending sequence (difference) there, otherwise it will move the start
forward on the negative descent

CHECKING: 3.6 with 3.9

currently in list: []

k=nums.length-2

Fusing stored start------""--------mmie e _____
3uriting range: 4.1-> 3.6 This is incorrect. We can see it has got this far because nums[k]=nums
THIS IS THE COUNTER: @ [k+1] 3.8, 3.8, hence it has continued the descendency.. | need to

E““ s hence address the associated else section.....
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correct. standaloneCount++;
However no sign of

TICKER: D(6)SS 3.7->3.6 0
[4.1->3.6, 3.8, 3.9]

Standalone number: Ascending chains: @ Descending chains: 1 TOTAL: 2

standaloneTemp="";

** Process exited - Return Code: @

| have introduced
this code

f (potentialfurtherAscendingBeyondThisStart!="" && potentialfurther endingBeyondThisEnd!

sm.add(po

m.out.println

m.out.println( nge: " + potentialfurtherAsc
completeT: e ondThisStal
potentialfurth ingBeyo i N
potentialfurt

[4.1->3.8, 3.8, 3.8->3.6, 3.9]

It looks to be resolved.
I suspect it will also work for ascending loop with repeat standalone.
I will quickly run a test.

TEST CASE:
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6Writing Standalone: 3.8
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CHECKING: 3.6 with 3.5

[3.5->3.8, 3.8, 3.8, 3.6->3.5, 3.9]

| introduced following code

sm.add(start);
S m.out.println
completeTicker(start
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valueOf (nums[k]);

(potentialfurth endingBeyondThisStart : potentialfurtherAscendingBeyondThisEnd

completeTicker(start, start,k,lengthNums);

[3.5->3.8, 3.8, 3.8->3.6, 3.6->3.5, 3.9]

I will need to run through all my test cases again unfortunately...

I am now finding that PASS
4.5f, 4.6f, 4.7f, 10.0f,5.0f,4.9f,4.8f //(no issues if 3 descending chains)

[4.5-34.7, 1@.8,




However the issue with descending going into standalone still persists:

CHECKING: 4.7 with 10.0

4.9

4.8

currently in list: []

K !=nums.length-2
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This is counter at the moment: 2
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88: Writing range: 4.9->4.8 It has written the
stored values... |
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CHECKING: 4.9 with 4.8

currently in lis
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Ghriting range: 5.8-> 4.8
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false
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TICKER: D(3)D(3)
[4.9-34.7, 4.8->: 5.0-34.8]

Standalone numbers scending chains: @ Descending chain TOTAL: 2

** Process exited - Return Code: 8 **

| am just going to create another test case and extend the standalone numbers so that
there is not a descending at the end...
And then | believe | can perform a full test.



TEST CASE:

[4.9->4.7, 10.8, 5.8, 74.9, 23.8, 4.8]

TEST CASE:
I am however seeing this test case failure. This clearly suggests | need to understand the
area surrounding ascending followed by multiple repeat standalone, then descending...

INCORRECT:

[3.5->3.8, 3.8, 3.8->3.6, 3.6->3.5, 3.9]

For me, it suggests that variables are not cleared for the store..

But | will take time as usual to investigate...
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CHECKING: 3.5 with 3.9

currently in lis

kenums. length-2 ' [3.5->3.8, 3.8, 3.6->3.5, 3.9]

3Writing range: 3.6->
THIS IS THE COUNTER:
test: @

true

Next number not within difference
599Writing standalone: 3.9

THIS IS THE COUNTER: @

THIS IS THE COUNTER: @

TICKER: A(3)SD(2)D(2)S
[3.5->3.8, 3.8, 3.8->3.6, 3.6->3.5, 3.9]

Standalone numbers: 2 Ascending chains: 1 Descending chains: 2 TOTAL: 5

| am extremely desperate to bring this challenge to a close.
I will run through all the test cases again slowly...



This is an issue appearing in relation to having repeat standalone and its resolution...

CHECKING: 3.8 with 3.6

currently in list: [4.1->3.8, 3.8]

K!=nums.length-2

next number not descending (difference)

This is counter at the moment: 3

counter is not zero

COUNTER VALUE: 3

previous number AND/OR next number not ascending(difference)
2Writing range: 3.8-> 3.8
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CHECKING: 3.6 with 3.5

if (nums[k]!=nums[k-17)
out.println i | U o ending(differen
.out.println driting i t + end);

sm.add(start+"->"+end);

completeT tart,end,k, lengthNums);
potentialfurtherAscendingBeyondThisStart
potentialfurtherAscendingBeyondThisEnd="";

TICKER: D(4)SD(2)S
[4.1->3.8, 3.8, 3.6->3.5, 3.9]

Standalone numbers: 2  Ascending chains: @ Descending chains: 2 TOTAL: 4

This is another scenario with issues:

Something suggests now since there are lots of standalone writes in the code, it might
be a universal fix required... But for now, | will just focus on the area that causes isues...

[3.5->3.8, 3.8, 3.8]




Y t.println(” 44 ! andalone: " + start);
isStandaloneProcessed

Ascending)
valueOf (nums[k]);
(potentialfurtherAscendingBeyondThisStart==" potentialfurtherAscendingBeyondThisEnd

if (!isStandaloneProcessed)

But we can see itis an inherent problem. | have included 2 x standalone 3.6 higher in the
chain... So | need to accommodate for the repetition at every scenario...

if (potentialfurtherAscendingBeyondThisStart== potentialfurtherAscendingBeyondThisEnd=
{

andaloneProcessed)

ceep track if 1 C
abs(nums[k] - (nums[k+1] - difference)) <epsilon)
'(Math.abs(nums[k] - (nums[k+1] + differenc cepsilon)
(nums[k]!=nums[k+1]))

t.println("¢

isStandaloneProcesseds=




But | do not think this is the solution that is required



