Examining this test case:

It has completely misinterpreted.. It looks to be related to having two
entries for 3.8f

TICKER: SSA(2)
[3.8, 3.8-»3.8, 3.8->3.9]

Standalone numbers: 2 Ascending chains: 1 Descending chains: @ TOTAL: 3

CHECKING: 4.1 with 4.0 r I pre ere tart t valueof (nums[k

currently in list: []

uence (difference) if (potentialfurtherAscendingBeyondThisStar otentialfurtherAscendingBeyondThisEn

CHECKING: 4.8 .9 n a complete spot of bother unle:

out.println(
currently in 1 store is implemented P N

Descending sequence (difference)

CHECKING: 3.9 with 3.8
currently in L 11
Descending sequence (difference)
©19238475Writing Standalone: 3.
THIS IS THE COUNTER: @

CHECKING: 3.8

have to inv

potentialfurth /|

tickerCount g TICKER: D(4)SD(3)S

THIS TS THE COUNTER: @ \ reaches this part, it will examine store as per usual and [4.1->3.8, 4.0, 3.7->3.5, 3.9]
nding/descending n rform write... sm.add(potentialfurthe ndingBeyondThis Start

4guriting rar

THIS IS THE COUNTER: @

THIS IS THE COUNTER: @

currently in 1

TOTAL: 3

need to complete changes above

if (Math.abs(nums[k] - (nums[k+1] + differenc <epsilon)

out.println(” iff THlS ‘S THE
. NEW CODE

potentialfurth di i a = start;
potentialfurther di y end;
ut.println(” ed start -

b potentialfurtherAscendingB iss ->" + potentialfurtherAscendingBeyondThisEnd);

=potentialfurth
d{start+" +end)
m.out.printl El

potentialfurtherAscending| ondThisStart="";
tialfurtherAscending ondThisEn

.A1f,4.¢€

TICKER: D(6)S5 . -
TRESITEMESPSE | can see this has been missed out

Standalone numbers: 2 Ascending chains: @ Descending chains: 1 OTAL: 2

CHECKING: 3.7 with 3.6 - -
4.1 | will need to write to the store

4.8 irrespective if k==0. But we do not need
currently in list: [] to write if there is contents already in
Descending sequence (difference) there, otherwise it will move the start
forward on the negative descent

CHECKING: 3.6 with 3.9

currently in list: []

k=nums.length-2

Fusing stored start------""--------mmie e _____
3uriting range: 4.1-> 3.6 This is incorrect. We can see it has got this far because nums[k]=nums
THIS IS THE COUNTER: @ [k+1] 3.8, 3.8, hence it has continued the descendency.. | need to

E““ s hence address the associated else section.....

8
false
testl correct

3Writing Standalone:

Next number not within diffey o:lF + standaloneTem
599Writing standalone: 3.9

THIS IS THE COUNTER: @ 3
THIS IS THE COUNTER: @

correct. standaloneCount++;
However no sign of

TICKER: D(6)SS 3.7->3.6 0
[4.1->3.6, 3.8, 3.9]

Standalone number: Ascending chains: @ Descending chains: 1 TOTAL: 2

standaloneTemp="";

** Process exited - Return Code: @

| have introduced
this code

f (potentialfurtherAscendingBeyondThisStart!="" && potentialfurther endingBeyondThisEnd!

sm.add(po

m.out.println

m.out.println(nge: " + potentialfurtherAsc
completeT: e ondThisStal
potentialfurth ingBeyo i N
potentialfurt

[4.1->3.8, 3.8, 3.8->3.6, 3.9]

It looks to be resolved.
I suspect it will also work for ascending loop with repeat standalone.
I will quickly run a test.

TEST CASE:

THIS IS THE COUNTER: @
919238475Writing Standalone:
THIS IS THE COUNTER: @

Standalone
CHECKING: 3.8 with 3.6 WFIEE. need

to remove

one of
currently in 1i -5-3 - these,
K!=nums.length-2 IdeaHy the

next number not descending (difference) second
This iz counter at the moment: @ occurrence
COUNTER NOT EQUAL TO @

next number not descending (difference)

previous number ascending (difference) OR next number descending(difference)
6Writing Standalone: 3.8

THIS IS THE COUNTER: @

CHECKING: 3.6 with 3.5

[3.5->3.8, 3.8, 3.8, 3.6->3.5, 3.9]

| introduced following code

sm.add(start);
S m.out.println
completeTicker(start
isFirstOccurenceAscen
isFirstOccur

b

isStandalonePr

valueOf (nums[k]);

(potentialfurth endingBeyondThisStart : potentialfurtherAscendingBeyondThisEnd

completeTicker(start, start,k,lengthNums);

[3.5->3.8, 3.8, 3.8->3.6, 3.6->3.5, 3.9]

I will need to run through all my test cases again unfortunately...

I am now finding that PASS
4.5f, 4.6f, 4.7f, 10.0f,5.0f,4.9f,4.8f //(no issues if 3 descending chains)

[4.5-34.7, 1@.8,

However the issue with descending going into standalone still persists:

CHECKING: 4.7 with 10.0

4.9

4.8

currently in list: []

K !=nums.length-2

next number not descending (differen

This is counter at the moment: 2

counter is not zero

COUNTER VALUE: 2

previous number AND/OR next number not ascending(difference)
Writing range: 4.9-> 4.7

THIS IS THE COUNTER: @ {
test: 2 This is ok em.out.printIn("pr
2 ut.println(”
7
false

sm.add(start+
completeTicker lengthNums) ;

CHECKING: 1.0 potentialfurtherAscendingBeyondTh

4.9
4.8

potentialfurtherAscendingBeyondThi

currently in 1

Standalones have
not been written

K !=nums . length-2

next number not descending (differen
This is counter at the moment: @
COUNTER NOT EQUAL TO @

next number not descending (difference)

previous number ascending (difference) OR next number descending(difference)
using stored start

88: Writing range: 4.9->4.8 It has written the
stored values... |
CHECKING: 5.8 with 4.9 was EXDECUng
these values to

[4.9->4.7, 10.0, 5.0->4.8]

currently in lis .
Descending sequence (difference)
Establishing start: 5.0

CHECKING: 4.9 with 4.8

currently in lis
Descending sequence (d
Ghriting range: 5.8-> 4.8
THIS IS THE COUNTER: @

false
THIS IS THE COUNTER: @

TICKER: D(3)D(3)
[4.9-34.7, 4.8->: 5.0-34.8]

Standalone numbers scending chains: @ Descending chain TOTAL: 2

** Process exited - Return Code: 8 **

| am just going to create another test case and extend the standalone numbers so that
there is not a descending at the end...
And then | believe | can perform a full test.

TEST CASE:

[4.9->4.7, 10.8, 5.8, 74.9, 23.8, 4.8]

TEST CASE:
I am however seeing this test case failure. This clearly suggests | need to understand the
area surrounding ascending followed by multiple repeat standalone, then descending...

INCORRECT:

[3.5->3.8, 3.8, 3.8->3.6, 3.6->3.5, 3.9]

For me, it suggests that variables are not cleared for the store..

But | will take time as usual to investigate...

rently in list: []
Kl=nums. length.
next number not descending (diFfer
This unter at the moment: @
COUNTER NOT EQUAL TO @
next number not descending (differ

previous number descending(difference) AND/OR next number ascending (differen
Mext number ascanding

Previous number descending (difference) AND next number ascending (difference)
- BABBGABLISTNG STORED TO WRITE RANGE

978588Mriting range 5 £

THIS 1S THE COLNTER: @

819238475Writing Standalone:

THIS IS THE COUNTE!

CHECKING:

next number not descending (differs
This is counter at the moment: ©
COUNTER MOT EQUAL TO 8

next number not descending (difference)

previous number ascending (difference) OR next number descending(difference) oL

.prin

currently in list: [3.5->3.8, 3.8]
Descending sequence (difference)
28Writing range: 3.8-> 3.5

THIS 15 THE COUNTER: &

test: 1

5

8

completeTicker(

only perform
ction if the next

We can also potentialfurtheras
variables

wiped out as

I
I
c
@

N alfurthera

g

@

oo ®
3

true
Establishing start: 3.6

CHECKING: 3.5 with 3.9

currently in lis

kenums. length-2 ' [3.5->3.8, 3.8, 3.6->3.5, 3.9]

3Writing range: 3.6->
THIS IS THE COUNTER:
test: @

true

Next number not within difference
599Writing standalone: 3.9

THIS IS THE COUNTER: @

THIS IS THE COUNTER: @

TICKER: A(3)SD(2)D(2)S
[3.5->3.8, 3.8, 3.8->3.6, 3.6->3.5, 3.9]

Standalone numbers: 2 Ascending chains: 1 Descending chains: 2 TOTAL: 5

| am extremely desperate to bring this challenge to a close.
I will run through all the test cases again slowly...

This is an issue appearing in relation to having repeat standalone and its resolution...

CHECKING: 3.8 with 3.6

currently in list: [4.1->3.8, 3.8]

K!=nums.length-2

next number not descending (difference)

This is counter at the moment: 3

counter is not zero

COUNTER VALUE: 3

previous number AND/OR next number not ascending(difference)
2Writing range: 3.8-> 3.8
THIS IS THE COUNTER: @

CHECKING: 3.6 with 3.5

if (nums[k]!=nums[k-17)
out.println i | U o ending(differen
.out.println driting i t + end);

sm.add(start+"->"+end);

completeT tart,end,k, lengthNums);
potentialfurtherAscendingBeyondThisStart
potentialfurtherAscendingBeyondThisEnd="";

TICKER: D(4)SD(2)S
[4.1->3.8, 3.8, 3.6->3.5, 3.9]

Standalone numbers: 2 Ascending chains: @ Descending chains: 2 TOTAL: 4

This is another scenario with issues:

Something suggests now since there are lots of standalone writes in the code, it might
be a universal fix required... But for now, | will just focus on the area that causes isues...

[3.5->3.8, 3.8, 3.8]

Y t.println(” 44 ! andalone: " + start);
isStandaloneProcessed

Ascending)
valueOf (nums[k]);
(potentialfurtherAscendingBeyondThisStart==" potentialfurtherAscendingBeyondThisEnd

if (!isStandaloneProcessed)

But we can see itis an inherent problem. | have included 2 x standalone 3.6 higher in the
chain... So | need to accommodate for the repetition at every scenario...

if (potentialfurtherAscendingBeyondThisStart== potentialfurtherAscendingBeyondThisEnd=
{

andaloneProcessed)

ceep track if 1 C
abs(nums[k] - (nums[k+1] - difference)) <epsilon)
'(Math.abs(nums[k] - (nums[k+1] + differenc cepsilon)
(nums[k]!=nums[k+1]))

t.println("¢

isStandaloneProcesseds=

But | do not think this is the solution that is required

