So | have performed same steps again as the previous document in order to resolve the

output for:

[4.1->4.0, 3.8->3.9, 3.8]

e

| fully understand the reason for these code changes... So itis a good time to try and
figure out resolution from hereon.

CHECKING: 4.1 with 4.0

currently in list: []

Descending sequence (difference)

- - ---Stored start -> end: 4.1->4.0
Establ

CHECKING: 4 with 3.9
currently in list: []
Descending sequence (difference)

CHECKING: 3.9 with 3.8
Corrently in Tistr [if (!standaloneTemp.equals(

Descending sequence (difference)

d(standaloneTemp)

CHECKING: 3 em.out.println d " + standaloneTemp);

currently in 1

complete to

SWriting range: 4.1-> 4.8

asc counter: @

3Writing Standalone
ascending/descending number (diffference)
4oWriting range: 3.

asc counter:

desc counter: @

TICKER: D(3)SA(2)
[4.1->4.0, 3.8, 3.8->3.9]

[4.1->4.0, 3.8->3.9]

I will not try the same again, but this time have leading ascending numbers.

K1=nums . length-2
next number not descending (difference)
This

---5tored start -» end: 3.5-»3.6

currently in list: []
Kl=nums . length-
next number not descending (difference)

This is counter at the moment: @

COUNTER NOT EQUAL TO @

next number not descending (difference)

previous mmber descending{difference) AMD/OR next number ascending (difference)
Next number ascending

First occurrence three consecutive ascending numbers (difference)
Previous mumber descending (difference) AND next number ascending (difference)

CHECKING: 3.7 with 3.8

currently in list: []

K1=nums . length-2

next number not descending (difference)

This is counter at the moment: @

COUNTER NOT EQUAL TO @

next number not descending (difference)

previous number descending(difference) AMD/OR next number ascending (difference)

Next number ascending

Previous number descending (difference) AND next number ascending (difference)

CHECKING:

currently in list: []

¢=nums. length-2

next number ascending (difference)
3SWriting range: 3.8-> 3.9

asc counter: 4

desc counter: @
asc counter: 1
desc counter: @

TICKER: A(S)
[3 1

Standalone numbers: @ Ascending chains: 1 Descending chains: @

+ potentialfurt

3

ntialfurther vondTh

[3.8->3.9, 3.5->3.8]

My next phase is to now try a more complicated arrangement with standalone.
Then | will try to introduce more intermittent standalone numbers...

TEST CASE:

ying standalones at the front

[4.9, 7.2, 3.5-»3.6, 43.0, 49.8, 3.7->3.8, 3.8->3

TEST CASE:

It appears allis resolved..

I will try all test cases in software code again..

| have found a failing case as below:

TICKER: SSSD(5)A(4)A(2)
[25.3, 72.8, 42.5, 74.5->74.1, 74.1->74.4, 74.1->74.5]

3121Writing range: 74.5-> 74.1
asc counter

desc counter:

test: 4

7

-Stored start -> end: 74.1-3>74.2

CHECKING: 74.2 with 74.3
currently in list: [25.3, 72.8, 42.5, 74.5-374.1]

K!=nums.length-2

next number not descending (difference)

This is counter at the moment:

COUNTER NOT EQUAL TO @

next number not descending (difference)

previous number descending(difference) AND/OR next number ascending (difference)
Next number ascending

First occurrence three consecutive ascending numbers (difference)

Previous number descending (difference) AND mext number ascending (difference)

CHECKTNG: 74.3 with 74.4
currently in list: [25.3, 72.8, 42.5, 74.5->74.1]
K!=nums . length

next number not descending (difference)
This is counter at the moment: @

COUNTER NOT EQUAL TO ©

next number not descending (difference)

previous number descending(difference) AND/OR next number ascending (differenc
Next number ascending

Previous number descending (difference) AND next number ascending (difference)

CHECKING: 74.4 with 74.5

currently in list: [25.3, 72.8, 42.5, 74.5-574.1]
k=nums.. length-2
-- 47171USING STORED TO WRITE RANGE
41717Writing range: 74.1-> 74.4

[25.3, 72.8, 42.5, 74.5->74.1, 74.1->74.4]

asc counter: 3

desc counter: @

next number ascending (difference)
-- CURRENT LIST: [25.3, 72.8, 42.5, 74.5->74.1, 74.1->74.4]

3SWriting range: 74.1-> 74.5
asc counter: 1
desc counter: @
asc counter: 1
desc counter: @

TICKER: SSSD(5)A(4)A(2)
[25.3, 72.8, 42.5, 74.5->74.1, 74.1->74.4, 74.1->74.5]
Standalone numbers: 3 Ascending chains: 2 Descending chain:

g.valueOf (nums[K]))

t.println("a1 . d ndThisStart + "-> " + nums[k

t.printIn(sm);
icker (potentialfurther i ing.valueof (nums[k gthhuns) ;

(!(potentialfurtherascending
tentialfurtherascendingBeyondThisend:
(nums[k]==nums [k-1]))

entialfurtherascendings
-out . println("s

out .printin(sa
eteTicl

potent ialfurtherascendingse;

[25.3, 72.8, 42.5, 74.5->74.1, 74.1->74.5]

| almost am certain this was just a rare case since | had already reached

k
So | will go through all my test cases again....

=nums.length-2

We can see my change above has had adverse effect for scenario such as:

fNEED TO FIX

CHECKING: 47.4 with 47.3
currently in list: []
Descending sequence {difference)
--Stored start -> end: 47.4->47.3
Establishing start: 47.4

CHECKING: 47.3 with 47.2
currently in list: []

Descending sequence (difference)

CHECKING: 47.2 with 47.5
currently in list: []
k=nums . length-2

7Jusing stored start--
3Writing range: 47.4-> 47.3
asc counter: @

desc counter: 2

test: 2

z

4

false

testl

Next number not within difference
599Writing standalone: 47.5
asc counter: @

desc counter:

asc counter

desc counter: @

TICKER: D(3)S
[47.4->47.3,
Standalone numbers: 1 Ascending chains: @ Descending chains: 1

h.abs(nums[k] - F

-out.println(

dd(start+”

n.out.println(+ end);

cout.println(
otentialfurthera

I found an issue in area of code for k=nums.length-2

CHECKING: 19.8 with 63.5
currently in list: [46.1, 48.1, 35.1-»35.3, 35.3-»35.1, 85.6-»85.2, 19.6-»20.€]

k=nums .length-2

3Writing range: 20.8-> 20.9
asc counter: @

desc counter: 2

Next number not within difference

500Writing standalone: 63.5

wn

asc counter: @
desc counter: 2
asc counter: @

desc counter: 2

TICKER: SSA(3)D(3)D(5)A(5)SS
[40.1, 4@.1, 35.1->35.3, 35.3-335.1, 85 .2, 19.6->20.0, 20.8-3>20.8, 63.5]

Standalone numbers: 4 Ascending chain Descending chains: 2 TOTAL: 8

[40.1, 40.1, 35.1->35.3, 35.3->35.1, 85.6->85.2, 19.6->20.0, 63.5]

I will go through all my tests again, since its related to the ending part, | will not test the
ChatGPT extracts again for now

Test case with issues.

currently in list: []

K!=nums. length-2

next number not descending (difference)
This is counter at the moment:

next number ascending (difference)

- -Stored start -> end:

CHECKING: 3.6 with 3.5

currently in list: []

Descending sequence (difference)

2Transition number: 3.6 descendiiibédifference) on either side
123456using stored start

197618Writing range: 3.5->3.6

asc counter: 2

desc counter 1

Establishing start: 3.6

CHECKING: 3.5 with 40.0
currently in list: [3.5->3.6]

ums . Length-2

_println("r

reach here

asc counter:

desc counter: 1

Next number not within difference
599Mriting standalone: 40.8

asc counter: 8

desc counter:

asc counter:

desc counte

TICKER: A(2)3S

[3.5->3.6,

Standalone numbers: 2 Ascending

: 19.8 with 63
Currently in list: [48

k=nums . length-2

3writing range: 20.0->

asc counter: @

desc counter: 2

Next number not within difference
599Writing standalone: 63.5

asc counter: 8

desc counter: 2

asc counter:

desc counter: 2

TICKER: SSA(3)D(3)D(5)A(5]

[42.1, 40.1, 35.1->35.3, 35.3->35.1, 85.6-85.2, 19.6->20.0, 20.0->20.8, 63.5]

Standalone numbers: 4 Ascending chains Descending chain

| had another failed case:

nmy code s never
used the store and also
written into it straight after

n.add(start+"->"+end);
1.out.println(

completeTicker(start,end, k, lengthhum

1
{

sm.add(start+"->"+end) ;
out.println("3Writing

[3.5->3.6, 3.6->3.5, 40.0]

"+ end);

CHECKING: 3.5 with 3.4
currently in list: []
Descending sequence (differenc

Stored start -> end: 3.5-33.4
Establishing start: 3.5

CHECKING: 3.4 with 3.35
currently in List: []
[p— s
next number not descending (difference) (((nuns..
This is counter at the moment: 1

counter is not zero

COUNTER VALUE: 1

previous number AND/OR next number not ascending(difference)

Zuriting range: 3.5-> 3.4

out.printIn("pre
ut.println("2Writing r

CHECKTNG: 3.35 with 3.6
currently in list: [3.5->3.4]

K!=nums. length-2

next number not descending (difference)
This is counter at the moment:

COUNTER NOT EQUAL TO @

next number not descending (difference)
previous number ascending (difference) OR next number descending(difference)

using stored start

888881Writing rang

em. out.println("p number nc ending(

if ((!potentialfurtherascendi st 1 (potentialfurtherascendingBeyondThisend=""))
(

s -out.println("2 i + potentialfurtherAscending8eyondThisStart + “-> * + potentialfurthera:
sm.add(potentialfurtherAscendingBeyondThisstarts"->" spotentialfurtherascendingBeyondThisend) ;
potentialfurtherascendingBeyondThi send
tentialfurtherAscendingBeyondThisstart:
r(potentialfurtherascendingeyondThiss tialfurtherascendingBeyondThisEnd, k, lengthNums) ;

_out.println(" i + end);
sm.add(start+"->"+end);
completeTicker(start,end, k, lengthNums);

[3.5->3.4, 3.35, 3.6->3.8]

I will go through all my test cases again since | consider this critical change.

I have found a failing test case and straight away it leads me to believe that | did coding
about to deal with standalones when k=nums.length-2

CHECKING: 4.1 with 4.8
currently in list: []
Descending sequence (difference)
Stored start -> end: 4.1->4.0
Establishing start: 4.1

CHECKING: 4.8 with 3.9
currently in list: []

Descending sequence (difference)

CHECKING: 3.9 with 3.8

currently in list: []

Descending sequence (difference)
REPEAT

CHECKING: 3.8 with 3.7
currently in list: []

Descending sequence (difference)

sm.add(potentialfurtheris
ut.println(

out.println("181818 H + potentialfurt

" + nums[k]);
completeTicker(potentialfurtherAscendingBeyondThisStart,S

potentialfurth

potentialfurth

1
¥

m.out.println(“INSIDE HERE!!!!
daloneTemp = :

I checked through the logs and it became clearly evident.

NG STORED TO WRITE RANGE
10101610Writing range:
asc counter: @

ounter: 3

currently in list: [4.1-33.3]
Descending sequence (difference)

CHECKING: 3.7 with 3.6 _print i diffi

currently in list: [4.1->3.8]

Descending sequence (difference)

F(nums[k+1]
potentialfurth cendingBey
potentialfurtherAscendingBey
st.println(- d t nd:
entialfurtherAscendingB dThi t " + potentialfurtherascending

CHECKING: 3.6 with 3.9

th.abs(nums[k] - (nums[k+1] + differen

.out.println("D
dingCoun

| hasProcessedRepeatNumbersPrevio

lue0f (nums[k+1]);
cendingBeyondThisStart = start;
potentialfurth cendingBeyondThisEnd = end;
.out.println(red start -
+ potentialfurtherAscending + potentialfurtherAscending ndThisEn

hasProcessedRepeatNumberspP

TICKER: D(4)D
[4.1->3.8, 3.8->3.6, 3.9]

Just to be sure logic is correct, | have to try and experiment with standalone numbers in
various positions..

CHECKING: 4.8 with 7.2

REACH HERE !!!1litl
©919238475Writing Standalone: 7.2
asc counter: @

desc counter: 1

CHECKING: 7.2 with 3.9

currently in list: [4.1->4.8, 7.2]

K!=nums.length-2

next number not descending (difference)

This is counter at the moment: @

COUNTER NOT EQUAL TO @

next number not descending (difference)

previous number ascending (difference) OR next number descending(difference)

BWriting Standalone: 7.2

asc counter: @

desc counter: 1

CHECKING: 3.9 with 3.3
currently in list: [4.1->4.8, 7.2, 7.2]
Descending sequence (difference)
Stored start -»> end: 7.2-33.8
Establishing start: 3.9
REPEAT

3.9
REACH HERE !!!!!
STORED TO WRITE RANGE
3.8

[4.1->4.0, 7.2, 7.2, 7.2->3.8, 3.8->3.7]

4 ilen)
h.abs(nums[k] - (nums[k-1] + difference)) psilon})

sm.add(nums[k-1]+"->"+nums[k]);

em.out.println(D TO WRITE RANGE");

+ nums[k]);

¢
\
¢
\

em.out.println(

[4.1-4.0, 7.2, 7.2, 3.9-)3.8, 3.8-)3.7]

I am now going to try few more to ensure it is robust

CHECKING: 3.8 with 4.4
currently in list: [4.1->4.0, 7.2, 7.2, 3.9->3.8]
K!=nums.length-2

next number not descending (difference)

This is counter at the moment: 1

counter is not zero

COUNTER VALUE: 1

previous number AND/OR next number not ascending(difference)
2blriting range: 3.8-> 3.8

asc counter: @

desc counter: @

CHECKING: 4.4 with 4.3
currently in list: [4.1->4.0, 7.2, 7.2, 3.9->3.8, 3.8->3.8]
Descending sequence (difference)

Stored start -»> end: 3.8->4.3
Establishing start: 4.4

have adjusted the code as below

f ((Math.abs(nums[k] - (nums[k+1] - differen
h.abs(nums[k] - (nums[k+1] + difference

sm.add(s
completeTi

| | now have one issue here

ut.println("p number

if ((potentialfurtt cendingBeyondThisStart
(potentialfurtherAscendingBeyondThisEnd!=

+ potentialfurthers

yondThisEnd);
yondThisEnd, k, LengthNum:

f ((potentialfurth endingBeyondThisStart!
(potentialfurtherAscendingBeyondThisEnd!="")

t.println(nums[
.println(”
.println("IN THE RE: " + potentialfurt endingBeyondThisEnd);

tem.out.println(“IN THE STORE: " + potentialfurtherAscendingBeyondThisStart)

bs(nums[k] - (nums[k-1] - diff
(nums[k] - (nums[k-1] + difference)) <

out.println(” NG STORED TO WRITE R
n.out.println("2awWriti " + potentialfurthera: hisstar " alueof (nums[k1));

completeTicker(potentialfurthera: di i of (nums[k]), k, lengthNum
potentialfurth cendingBeyondThisStart="

rt.println{"CL

TICKER: D(2)SSD(2)D(2)SS
[7.2, 7.2, 3.9->3.8, 3.7, 3.7]

I will just complete all my test cases again.. Itis difficult to keep getting more
sophisticated with standalones but | will try few more...

CHECKING: 3.9 with 3.8

currently in list: [2.8, 3.45, 2.1-3>2.2, 3.67]
Descending sequence (difference)
3.9
3.8
Establishing start: 3.9

1 be seen it has not stored the

We know k!=0

CHECKING: 3.8 with 3.5

we know the numbers before

Once again, | do not want to look too far back in the
sequence since this is concerned mainly with
adjacent numbers..

| have chosen
the most
obvious
scenario

& {pﬂtentialfuPtherﬁscendingBeyGndThisEnd=F""}}

alueOf(nums[k]);
g luef (nums[k+1]);
potentialfurth .cendingBeyondThisStart
potentialfurtherAscendingBeyondThisEnd = e

em.out.println(
+ potentialfurtherAscendingBeyondThisStart +

hasProcessedRepeatNumbersPre

[2.0, 3.45, 2.1->2.2, 3.67, 3.9->3.8, 3.5]

Itis time to give up... Itis too difficult

